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1 Introduction

Doi-Peliti field theory is a framework for analyzing stochastic processes by mapping them to field

theories expressed as path integrals. The approach begins by transforming a master equation

into a quantum-mechanics problem using creation and annihilation operators, which can then be

reformulated as a path integral. These transformations are detailed in the following notes.

My interest was piqued by the paper Field-theoretic approach to fluctuation effects in neural networks

by Buice and Cowan (PRE, 2007), which uses this framework to study a neural-network model

where neurons emit varying numbers of spikes over time. The network dynamics, governed by the

evolution of the joint probability distribution of spike numbers across neurons, follows a master

equation. The mean-field behavior of these dynamics yields a version of the Wilson-Cowan equations,

while the Doi-Peliti path integral enables the calculation of fluctuations around this solution.

Link to Buice and Cowan: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.75.

051919

These notes are based on several excellent resources:

• Notes by Johannes Pausch: https://johannespausch.github.io/NESFT-Pausch-LectureNotes2020.

pdf

• Notes by Gunnar Pruessner: https://www.ma.imperial.ac.uk/~pruess/publications/

Gunnar_Pruessner_field_theory_notes.pdf

• Notes by John Cardy (see Field Theory and Non-Equilibrium Statistical Mechanics PostScript

notes): https://www-thphys.physics.ox.ac.uk/people/JohnCardy/

• Chapter 9 (“Reaction-diffusion systems”) of the textbook Critical Dynamics by Uwe C. Täuber:

https://www.cambridge.org/core/books/critical-dynamics/041557627C8F8F36D96084B7617BFD5D

The Appendix of Buice and Cowan also provides an instructive introduction to this formalism.

2 Master Equation

Consider a natural number N(t) ∈ {0, 1, . . .} that varies in continuous time, described by a

probability distribution P (N(t1), . . . , N(tn)) for any times t1, . . . , tn. We assume only that this
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process is Markovian, which means that, if t1 < . . . < tn,

P (N(tn)|N(t1), . . . , N(tn−1)) = P (N(tn)|N(tn−1)). (1)

In other words, conditioning on past observations can be restricted to the most recent observation.

The Markov property allows us to derive a master equation that governs the evolution of the

conditional probability P (N(t) = n|N(0) = n0) for n ∈ {0, 1, . . .}. We begin by examining

P (N(t+∆t) = n|N(0) = n0), which we can write as

P (N(t+∆t) = n|N(0) = n0)

=
∑
m

P (N(t+∆t) = n|N(t) = m,N(0) = 0)P (N(t) = m|N(0) = n0) (probability chain rule)

=
∑
m

P (N(t+∆t) = n|N(t) = m)P (N(t) = m|N(0) = n0) (Markov property)

=
∑
m

P (N(t) = n|N(t) = m)︸ ︷︷ ︸
=δnm

+∆t∂t′P (N(t′) = n|N(t) = m)
∣∣
t′=t︸ ︷︷ ︸

=Wt(n|m)

P (N(t) = m|N(0) = n0).

(2)

The only approximation is the last step, where we expand to first order in ∆t. Here we introduce

the transition rate Wt(n|m), which is the instantaneous rate of change of the probability of

transitioning from state m to state n at time t. Due to probability conservation, these rates must

satisfy
∞∑
n=0

Wt(n|m) = 0 (3)

for all m, which leads to

Wt(n|n) = −
∑
m ̸=n

Wt(m|n). (4)

In Eq. (2), separating the m = n and m ̸= n cases in the sum and using Eq. (4) gives

1

∆t

[
P (N(t+∆t) = n|N(0) = n0)− P (N(t) = n|N(0) = n0)

]

=
∑
m̸=n

[
Wt(n|m)P (N(t) = m|N(0) = n0)−Wt(m|n)P (N(t) = n|N(0) = n0)

]
. (5)
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Taking ∆t→ 0 yields the master equation

∂tP (N(t) = n|N(0) = n0) =
∑
m ̸=n

[
Wt(n|m)P (N(t) = m|N(0) = n0)−Wt(m|n)P (N(t) = n|N(0) = n0)

]
.

(6)

The right-hand side has two terms:

• A gain term representing the increase in probability due to transitions into state n from other

states m

• A loss term representing the decrease in probability due to transitions out of state n into

other states m

Note that this derivation did not use the fact that N(t) is a natural number—the state space is

completely arbitrary as far as Eq. (6) is concerned. Going forward, however, we will focus on the

case of a single natural number. Extension to the case of several natural numbers on a lattice

(modeling, for example, a network of spiking neurons arranged in space) is straightforward.

Extinction Process

As an illustrative example, consider an extinction process where N(t) is the number of particles

present at time t, with each particle having a decay rate ϵ. The master equation for this process is

∂

∂t
P (N(t) = n|N(0) = n0) = ϵ

[
(n+1)P (N(t) = n+1|N(0) = n0)−nP (N(t) = n|N(0) = n0)

]
. (7)

On the right-hand side:

• The term dtϵ(n + 1) is the probability that, within time interval dt, one of n + 1 particles

present decays, resulting in a state with n particles (gain term)

• The term dtϵn is the probability that, within time interval dt, one of the n particles present

decays, resulting in a state with n− 1 particles (loss term)

3 Quantum Mechanical Formulation

Note that the master equation describes linear dynamics (potentially with a time-dependent dynamics

matrix, if the transition rates are time-dependent) of a vector with components P (N(t) = n) for

n ∈ {0, 1, . . .}. This is analogous to quantum mechanics. We now introduce quantum mechanical

notation inspired by this analogy.
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Creation/annihilation operators and number states

We begin by defining three objects: the creation operator a†, its Hermitian conjugate the

annihilation operator a, and a special state called the vacuum |0⟩. These satisfy

[a, a†] = 1, (8a)

a |0⟩ = 0, (8b)

⟨0|0⟩ = 1. (8c)

We then define the number states |n⟩ as

|n⟩ = (a†)n |0⟩ . (9)

From the properties in Eq. (8), we can derive1

a† |n⟩ = |n+ 1⟩ , (10)

a |n⟩ = n |n− 1⟩ , (11)

⟨n|m⟩ = n!δnm. (12)

The notes of Pruessner keep Eqs. (10) and (11) but enforce ⟨n|m⟩ = δnm, which results in a and a†

not being Hermitian conjugates of each other.

The number operator a†a counts the number of particles through the relation

a†a |n⟩ = n |n⟩ . (13)

Wavefunction and pseudo-Hamiltonian

Unlike quantum mechanics where the wavefunction represents the square root of probability, we

define our wavefunction to be linear in probability (because the master equation is linear in

1Note that our definition of number states differs from standard quantum mechanical conventions. In terms of our
definition, quantum mechanics uses the normalization

|n⟩QM =
1√
n!

|n⟩ ,

which leads to

a† |n⟩QM =
√
n+ 1 |n+ 1⟩QM

a |n⟩QM =
√
n |n− 1⟩QM

QM ⟨n|m⟩QM = δnm

with the same commutation relations and vacuum-state normalization as in Eq. (8).
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probability):

|ψ(t)⟩ =
∑
n

P (N(t) = n) |n⟩ . (14)

In this representation, the master equation takes the form

∂t |ψ(t)⟩ = −H(a†, a) |ψ(t)⟩ , (15)

where H(a†, a) is the pseudo-Hamiltonian (“pseudo” because there is no i on the left-hand

side; this is the terminology used by Täuber), also called the Liouvillian. We assume H(a†, a)

can be expressed as a polynomial of creation and annihilation operators. We also assume that

it is in normal-ordered form, meaning all creation operators appear to the left of annihilation

operators. Any polynomial in a† and a can be normal-ordered using the commutation relations from

Eq. (8). Importantly, we have assumed that the transition rates in the original master equation are

time-independent so that H(a†, a) is time-independent. The solution to Eq. (15) is

|ψ(t)⟩ = e−H(a†,a)t |ψ(0)⟩ . (16)

Probabilities and expectation values

We can extract probabilities from the wavefunction using

P (N(t) = n) =
1

n!
⟨n|ψ(t)⟩ . (17)

For expectation values of the form

⟨O(t)⟩ =
∞∑
n=0

P (N(t) = n)cn, (18)

where cn are numbers defining the observable, we encode these numbers as eigenvalues of an operator

O =
∞∑
n=0

cn
|n⟩⟨n|
n!

, (19)

which gives us

⟨n|ψ(t)⟩ cn = ⟨n| O |ψ(t)⟩ . (20)
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This leads to the formula

⟨O(t)⟩ =
∞∑
n=0

P (N(t) = n)cn (restating Eq. 18)

=

∞∑
n=0

1

n!
⟨n|ψ(t)⟩ cn (using Eq. (17))

=
∞∑
n=0

1

n!
⟨n| O |ψ(t)⟩ (using Eq. (20))

= ⟨0|
∞∑
n=0

an

n!
O |ψ(t)⟩ . (21)

We introduce the bra vector

⟨0| ea, where ea =
∞∑
n=0

an

n!
, (22)

which projects a state onto each number state ⟨n|, normalizes by dividing by n!, and sums over n.

We then obtain the elegant result

⟨O(t)⟩ = ⟨0| eaO |ψ(t)⟩ . (23)

Probabilities summing to unity is equivalent to

⟨0| ea |ψ(t)⟩ = 1. (24)

4 Coherent states

Exponentiating creation and annihilation operators yields important eigenvector-eigenvalue relations.

For any complex number ϕ, we have

⟨0| eϕ∗aa† = ⟨0| eϕ∗aϕ∗, (25)

aeϕa
† |0⟩ = ϕeϕa

† |0⟩ , (26)

where Eq. (26) is the Hermitian conjugate of Eq. (25). These relations can be obtained by expanding

the exponential in a Taylor series as in Eq. (22). The kets eϕa
† |0⟩ form a set of right eigenvectors of

a with eigenvalue ϕ, and likewise the bras ⟨0| eϕ∗a form a set of left eigenvectors of a† with eigenvalue

ϕ∗. A special case of the latter is the bra ⟨0| ea from Eq. (22), which is a left eigenvector of a†

with eigenvalue unity. The fact that these eigenvectors are parameterized by a complex number

rather than an integer indicates that they form an overcomplete set. These eigenvectors are called

coherent states.
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These coherent states provide a resolution of the identity,

1 =

∫
dϕ∗ ∧ dϕ

2πi
e−|ϕ|2eϕa

† |0⟩⟨0| eϕ∗a. (27)

The wedge product in the measure is a convenient way to denote integration over the complex plane.

For ϕ = x+ iy (where x and y are real), we have

dϕ∗ ∧ dϕ
2i

=
(dx− idy) ∧ (dx+ idy)

2i
= dx ∧ dy, (28)

using the antisymmetry property of the wedge product, A ∧B = −B ∧A. The resulting integral∫
dx ∧ dy(· · · ) is evaluated as

∫∞
−∞ dx

∫∞
−∞ dy(· · · ). When Eq. (27) is written in polar coordinates

in the complex plane, one can show that it becomes
∑∞

n=0
1
n! |n⟩⟨n|, which is the identity operator

because the number states form an orthonormal basis (when normalized by 1/
√
n!). The factor

e−|ϕ|2 in Eq. (27) can be thought of as compensating for the overcompleteness of the coherent states.

5 Probability conservation

A property of the pseudo-Hamiltonian is that setting a† = 1 results in H(1, a) = 0. This results

from probability conservation over time, which is equivalent to, for all t,

⟨0| eae−H(a†,a)t |ψ(0)⟩ = 1 (29)

Taylor-expanding the left-hand side in t yields

∞∑
n=1

⟨0| ea
(
H(a†, a)

)n
|ψ(0)⟩ (−t)

n

n!
= 0, (30)

where we note that the n = 0 term gives ⟨0| ea |ψ(0)⟩ = 1 for a normalized initial wavefunction

(Eq. (24)). Each term n ≥ 1 in the sum must individually vanish. Taking the n = 1 term and using

normal ordering, along with the fact that ⟨0| ea is a left eigenvector of a† with eigenvalue unity

(Sec. 4), we have

⟨0| eaH(a†, a) |ψ(0)⟩ = ⟨0| eaH(1, a) |ψ(0)⟩ = 0. (31)

Since |ψ(0)⟩ is arbitrary, we have ⟨0| eaH(1, a) = 0. Since ea can be commuted past H(1, a) and is

invertible, we have ⟨0|H(1, a) = 0. Finally, since H(1, a) contains only annihilation operators which

create particles when acting on the vacuum bra to its left, we arrive at

H(1, a) = 0. (32)

In quantum mechanics, one can in principle use any (Hermitian) operator as a Hamiltonian. By

contrast, pseudo-Hamiltonians used in Doi-Peliti theory satisfy the special constraint Eq. (32) due
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to their origin in probability-conserving master equations.

A consequence of Eq. (32) is that, for all t,

⟨0| eae−H(a†,a)t = ⟨0| ea. (33)

6 Path integral

Consider evolving the vacuum state |0⟩ under the pseudo-Hamiltonian H(a†, a) from time ti to tf .

The expectation value of an observable O at an intermediate time t can be written as

⟨O(t)⟩ = ⟨0| eae−H(a†,a)(tf−t)O(a†, a)e−H(a†,a)(t−ti) |0⟩ . (34)

We could simplify Eq. (34) using Eq. (33), i.e.,

⟨0| eae−H(a†,a)(tf−t) = ⟨0| ea, (35)

however, retaining the time evolution from t to tf allows for generalization to inserting additional

operators to compute correlation functions in the path integral.

We do, however, simplify Eq. (34) using the commutation relation

eaa† = (a† + 1)ea (i.e., [ea, a†] = ea). (36)

Using this relation, we can commute ea past all operators in Eq. (34), replacing each a† with a† + 1.

We can then eliminate ea altogether by noting that ea |0⟩ = |0⟩ (although this elimination is a

consequence of our simplifying assumption that the initial state is the vacuum; in general, ea must

be absorbed into the initial state). This operation of replacing a† with a† + 1 is known as the Doi

shift. It yields

⟨O(t)⟩ = ⟨0| e−H(a†+1,a)(tf−t)O(a† + 1, a)e−H(a†+1,a)(t−ti) |0⟩ . (37)

To rewrite this as a path integral, we introduce a time-indexed version of the resolution of the

identity (Eq. (27)),

1t =

∫
dϕ∗(t) ∧ dϕ(t)

2πi
e−|ϕ(t)|2eϕ(t)a

† |0⟩⟨0| eϕ∗(t)a. (38)

Eq. (37) can be expressed as

⟨O(t)⟩ = ⟨0| 1tf EDS 1tf−∆t · · · 1t+∆t EDS 1t ODS 1t−∆t EDS 1t−2∆t · · · 1ti EDS 1ti−∆t |0⟩ , (39)

EDS = e−∆tH(a†+1,a), (40)

ODS = O(a† + 1, a). (41)
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Defining the measure

Dϕ =
dϕ∗(tf ) ∧ dϕ(tf )

2πi
· · · dϕ

∗(ti −∆t) ∧ dϕ(ti −∆t)

2πi
, (42)

we can write

⟨O(t)⟩ =
∫

Dϕ exp

(
− |ϕ(tf )|2 − · · · − |ϕ(ti)|2 − |ϕ(ti −∆t)|2

+ log ⟨0| eϕ∗(tf )aEDSe
ϕ(tf−∆t)a† |0⟩+ · · ·

+ log ⟨0| eϕ∗(ti)aEDSe
ϕ(ti−∆t)a† |0⟩

)
ODS(ϕ

∗(t), ϕ(t)), (43)

where

ODS(ϕ
∗(t), ϕ(t)) = O(ϕ∗(t) + 1, ϕ(t)). (44)

Each term of the form log ⟨0| eϕ∗(t)aEDSe
ϕ(t−∆t)a† |0⟩ is some function of ϕ∗(t) and ϕ(t−∆t). Note

that the variable ϕ∗(ti −∆t) appears only once in the exponential of Eq. (43), namely, in the term

|ϕ(ti−∆t)|2. We can therefore integrate it out, yielding a delta function that enforces ϕ(ti−∆t) = 0,

reflecting the initial state being the vacuum.

Working to linear order in ∆t, we have

log ⟨0| eϕ∗(t)aEDSe
ϕ(t−∆t)a† |0⟩ = ϕ∗(t)ϕ(t−∆t)−∆tHDS(ϕ

∗(t), ϕ(t−∆t)) +O(∆t2), (45)

where

HDS(ϕ
∗(t), ϕ(t−∆t)) = H(ϕ∗(t) + 1, ϕ(t−∆t)). (46)

Taking the limit ∆t→ 0 yields the Doi-shifted path integral:

⟨O(t)⟩ =
∫

Dϕ exp

(
−
∫ tf

ti

dt′
(
ϕ∗(t′)∂t′ϕ(t

′) +HDS(ϕ
∗(t′), ϕ(t′))

))
δ(ϕ(ti))ODS(ϕ

∗(t), ϕ(t)) (47)

In the limit ti → −∞, where we have allowed the system to equilibrate by time t, we can discard

the delta function enforcing the initial condition. Taking tf → ∞ as well yields

⟨O(t)⟩ =
∫

Dϕ exp

(
−
∫ ∞

−∞
dt′
(
ϕ∗(t′)∂t′ϕ(t

′) +HDS(ϕ
∗(t′), ϕ(t′))

))
ODS(ϕ

∗(t), ϕ(t)). (48)

Without the Doi shift, we get an extra term ϕ(tf ) in the exponential corresponding to a final

condition. However, in the limit tf → ∞, we can discard this term, and the non-Doi-shifted path

integral takes the same form as Eq. (48) but without the Doi shift in the pseudo-Hamiltonian or

observable.
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Path integral for the extinction process

Let us return to the extinction process discussed earlier. To derive its pseudo-Hamiltonian, we start

with its master equation (Eq. (7)), multiply both sides by |n⟩, and sum over n, yielding

∂t |ψ(t)⟩ = ϵ

( ∞∑
n=0

(n+ 1)P (n+ 1) |n⟩ −
∞∑
n=0

nP (n) |n⟩

)

= ϵ
∞∑
n=0

P (n) (n |n− 1⟩ − n |n⟩) (49)

= ϵ
(
a− a†a

) ∞∑
n=0

P (n) |n⟩ . (50)

We can read off the pseudo-Hamiltonian as

H(a†, a) = ϵ(a† − 1)a. (51)

As anticipated from our discussion of probability conservation, this pseudo-Hamiltonian satisfies

H(1, a) = 0. Applying the Doi shift and switching to fields gives

HDS(ϕ
∗(t), ϕ(t)) = ϵ|ϕ(t)|2. (52)

Finally, the corresponding path-integral action (see Eq. (48)) takes the form

S[ϕ∗, ϕ] =

∫ ∞

−∞
dtϕ∗(t)(∂t + ϵ)ϕ(t). (53)

Thus, particle extinction manifests as a mass term in the action. The propagator, which is the

functional inverse of K(t, t′) = (∂t + ϵ)δ(t− t′), is ∼Θ(t− t′)e−ϵ(t−t′).

We can extend this simple model by adding more complex terms to the original master equation,

which introduces nonlinear interaction terms in the action. These can be handled using standard

perturbation theory methods (e.g., Feynman diagrams). Alternatively, Buice and Cowan derive

fluctuation effects within the path integral framework by deriving loop corrections to the effective

action, given by the Legendre transformation of the log-path integral.
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