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Neural circuits comprise multiple interconnected regions, each with complex dynamics.
The interplay between local and global activity is thought to underlie computational
flexibility, yet the structure of multiregion neural activity and its origins in synaptic
connectivity remain poorly understood. We investigate recurrent neural networks with
multiple regions, each containing neurons with random and structured connections.
Inspired by experimental evidence of communication subspaces, we use low-rank
connectivity between regions to enable selective activity routing. These networks
exhibit high-dimensional fluctuations within regions and low-dimensional signal
transmission between them. Using dynamical mean-field theory, with cross-region
currents as order parameters, we show that regions act as both generators and
transmitters of activity—roles that are often in tension. Taming within-region activity
can be crucial for effective signal routing. Unlike previous models that suppressed neural
activity to control signal flow, our model achieves routing by exciting different high-
dimensional activity patterns through connectivity structure and nonlinear dynamics.
Our analysis of this disordered system offers insights into multiregion neural data and
trained neural networks.

neural networks | modularity | disordered system | nonlinear dynamics

A striking example of convergent evolution in nervous systems is the emergence of
well-defined anatomical regions that interact with one another (1–4). Recent advances
in neural-recording technologies have enabled simultaneous monitoring of thousands
of neurons across multiple brain areas in vivo (5–8). These studies reveal that neurons
exhibit varying degrees of regional specialization in their activities (4, 9–11). This regional
specialization, balanced with cross-region interactions, is believed to underlie the flexible,
adaptive capabilities of neural circuits (12–14). Modern neural datasets thus reveal an
intricate interplay between region-specific and broadly distributed signals.

These datasets raise fundamental questions about the origins and functions of mul-
tiregion neural activity (15–18). To address them, researchers have trained multiregion
recurrent neural network models, either to perform cognitive tasks (19–22) or to generate
recorded neural data (23, 24). These models have shed light on directed multiregion
interactions involved in sensorimotor processing, context modulation, and changes in
behavioral states (25).

However, in both real neural circuits and their artificial counterparts, the nature of
multiregion interactions remains largely mysterious. In particular, we lack understanding
of the connectivity supporting modular computations and the mechanisms of flexible
signal routing. The coexistence and interaction of region-specific and network-wide
dynamics are also unclear.

To address these challenges, we analyze a recurrent network model with multiple
regions. Each region has a combination of random and low-rank connectivity, generating
both high-dimensional fluctuations and specific low-dimensional patterns (26, 27).
We connect regions using low-rank connectivity, enabling selective routing of low-
dimensional signals between regions.

Due to its nonlinear dynamics and multiregion connectivity structure, this model
produces an extremely rich and broad array of dynamic states depending on the
connectivity. We develop an analytical theory of this multiregion activity structure by
deriving and solving dynamical mean-field theory (DMFT) equations for the network
in the limit where each region has infinitely many neurons for any finite number of
regions. Given the complexity of the resulting DMFT equations, we solve them in stages
of increasing complexity: first considering symmetric effective interactions leading to
fixed-point solutions in the low-dimensional dynamics and then progressing to include
disorder. Finally, we examine general effective interactions with the potential for limit-
cycle solutions, requiring numerical solution.
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Our analysis of this disordered system reveals two key ideas,
each supported by various specific results:

Key idea 1: Regions serve dual roles as generators and
transmitters of activity, with an inherent tension between
these functions. When the intrinsic dynamics within a region
become too strong or complex, the region’s ability to transmit
signals is compromised. Our analysis characterizes this conflict
and demonstrates how taming within-region dynamics is
crucial for network-level communication.
Key idea 2: Signal routing throughout the network is achieved
by shifting which subspaces of high-dimensional activity space
are excited or unexcited through the interplay of connectivity
statistics and nonlinear recurrent dynamics. The subset of sub-
spaces that are excited depends on the geometric arrangement
of low-rank connectivity patterns and the strength of disor-
dered connectivity. Our approach complements earlier mod-
els of gating and routing in neural circuits, which emphasized
single-neuron biophysical mechanisms such as neuromodu-
lation, inhibition, or gain modulation (28), by developing a
geometric, population-level view of information flow.

Overall, our work provides a theoretical framework for
understanding the interplay between regional specialization and
multiregion interactions in neural circuits, offering insights into
the mechanisms underlying flexible signal routing and modular
computations in the brain.

Multiregion Network Model

Here, we present the multiregion network model, first describing
its dynamics and then its connectivity.

Dynamics. We study rate-based (nonspiking) recurrent neural
networks comprising R regions, each containing N neurons.
We consider a finite number of regions R and take the limit
N → ∞, corresponding to a small or moderate number of
regions, each with a large number of neurons. The preactivations
of the neurons, analogous to membrane potentials, are denoted
by x�i (t), where � ∈ {1, . . . , R} specifies the region and i ∈
{1, . . . , N } specifies the within-region neuron. The activations,
analogous to firing rates, are given by ��i (t) = �(x�i (t)), where
�(x) = erf(

√
�x/2) is a pointwise nonlinearity that is linear

for small |x| and saturates at ±1 for large |x|. Neurons interact
through a synaptic coupling matrix J��ij according to

dx�i (t)
dt

= −x�i (t) +
R∑
�=1

N∑
j=1

J��ij �
�
j (t). [1]

Connectivity. The connections within each region � are dense
and consist of the sum of random disordered couplings, ��ij ,
and a rank-one matrix, as investigated by Mastrogiuseppe and
Ostojic (26). This rank-one matrix is defined as the outer product
of vectors m�� and n��. Connections between pairs of regions,
such as from region � to �, are represented by additional rank-
one matrices formed by outer products of vectors m�� and n��
(Fig. 1A). The synaptic coupling matrix is thus expressed as

J��ij = �����ij +
1
N
m��i n��j . [2]

Each element of ��ij is sampled independently from a zero-
mean Gaussian with variance (g�)2/N . This 1/

√
N scaling of

B

A

Fig. 1. (A) Top: Schematic of the synaptic connectivity model. Different
regions, each with “random plus rank-one” connectivity, are linked via rank-
one matrices representing communication subspaces. In this network of
R = 4 regions, we highlight the rank-one and disordered couplings in
region �, as well as the structured couplings to and from region �. Rank-
one connections are defined through the outer product of vectors m��

and n�� . Bottom: Tensor T���, which encodes the geometric arrangement of
the connectivity patterns and determines the dynamics of region-to-region
currents in the mean-field picture. (B) Anatomical bottleneck or effective
bottleneck implementing a rank-one connectivity matrix between regions
� and �. The dashed circle represents a linear neuron with fast timescale.

the disordered couplings ensures that the eigenspectrum of ��ij
remains independent of network size for large N .

For tractability, we assume that the components of the
vectors m�� and n�� are zero-mean random variables drawn
from a multivariate Gaussian. Specifically, for each neuron in
the network, such as for neuron i in region �, there are 2R
jointly sampled components: {n��i }

R
�=1 ∪ {m

��
i }

R
�=1. To define
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the second-order statistics of these components, we introduce the
tensors:

T ��� =
〈
n��i m��i

〉
J , [3a]

U��� =
〈
m��i m��i

〉
J . [3b]

Our analysis will demonstrate that specifying the remaining
second-order statistics,

〈
n��i n��i

〉
J , is not necessary to study the

dynamics in the limit N →∞. However, to sample the vectors
defining the low-rank part of the couplings, we must specify〈
n��i n��i

〉
J . We set this proportional to ��� with a scale factor

large enough to ensure that the overall covariance matrix of vector
components is positive-definite. As N → ∞, these tensors can
equivalently be expressed by the normalized overlaps or inner
products:

T ��� =
1
N

N∑
i=1

n��i m��i , [4a]

U��� =
1
N

N∑
i=1

m��i m��i . [4b]

Thus, T ��� and U��� encode the geometric arrangement of
connectivity patterns (Fig. 1 A, Bottom), providing a concise
representation of the network’s structure. When showing sim-
ulation results, we will consider only large networks where the
particular realization of connectivity is not significant, and the
system behavior is controlled by g�, T ���, and U���.

Table 1 summarizes the variables and notation used through-
out this article.

Biological Motivations and Assumptions

In constructing this model, we aimed to incorporate sufficient
biological detail to capture nontrivial phenomena while main-
taining analytical tractability. In this section, we elucidate the
biological foundations of our model, outlining its underlying
assumptions and limitations, first addressing the dynamics and
then the connectivity.

Dynamics: Motivation and Assumptions. The complexity in our
network model’s dynamics, compared to linear networks that
can simply be diagonalized, stems from the nonlinear activations
of individual neurons. This nonlinearity is inspired by the
transformation of input currents into spike trains by real neurons.
While our model captures this crucial aspect, it does not account
for other features of cortical circuits, such as distinct excitatory
and inhibitory populations (i.e., Dale’s law), sparse connectivity,
and nonnegative firing rates.

This level of abstraction mirrors that used in the seminal
work of Sompolinsky et al. (29), which described chaotic
activity arising from strong random connectivity. Indeed, our
multiregion model reduces to R independent samples of this
model when the structured low-rank couplings are set to zero.
In this special case, each disconnected region transitions from
quiescence to high-dimensional chaos at a critical coupling
variance, defined by g� = 1.

Our use of this level of abstraction is supported by recent
studies demonstrating that network models incorporating the
biological features we omitted (i.e., nonnegative rates or spikes,
sparse connections, and excitatory-inhibitory populations) can

Table 1. Summary of notation

Network variables
x�i (t) Preactivation (“membrane potential”) of neuron i

in region � at time t (Eq. 1)
��i (t) Activation (“firing rate”) of neuron i in region � at

time t (Eq. 1)

Network parameters
N Number of neurons in each region
R Number of regions
J��ij Synaptic coupling from neuron j in region � to

neuron i in region � (Eq. 2)
��ij Random component of within-region synaptic

couplings in region � (Eq. 2)
g� SD (times

√
N) of random couplings in region �

m�� Vector with components m��
i ; defines structured

input pattern from region � to neurons in region
� (Eq. 2)

n�� Vector with components n��i ; defines structured
readout pattern from neurons in region � to
region � (Eq. 2)

DMFT variables
Δ�(t, t ′) Correlation function of preactivations in region �

(Eq. 5a)
C�(t, t ′) Correlation function of activations in region �

(Eq. 5b)
S��(t) Current from region � to region � at time t (Eq. 6)
H��(t) Drive to S��(t) in the mean-field dynamics of the

currents (Eq. 7)
 �(t) Neuronal gain in region � at time t (Eq. 8)
A� Sum of squared currents from all regions into

region �
S��0 Fixed-point value of interregion current from

region � to region �
���(t) Perturbation to the interregion current from

region � to region �
Δ̂�(�) Normalized stationary correlation function (Eq. 21)

DMFT parameters
T��� Normalized overlap between readout and input

patterns, representing effective interaction from
region � to region � through region � (Eq. 4a)

T̂��,�� Matrix form of T��� (Eq. 11)
U��� Overlap between input vectors in region �

originating from regions � and � (Eq. 4b)
c�� Symmetric parameterization of T��� (Eq. 12)
u� Rank-one contribution to “rank-one plus diagonal”

parameterization of c�� (Eq. 13)
h� Diagonal contribution to “rank-one plus diagonal”

parameterization of c�� (Eq. 13)
a� Strength of direct self-interaction (Eq. 14)
b� Strength of indirect self-interaction (Eq. 14)

exhibit equivalent dynamical regimes. This equivalence has been
observed both for disordered couplings, where the same transition
to chaos occurs (30, 31), and for low-rank couplings (32, 33).

Connectivity: Motivation and Assumptions. We use rank-one
matrices to model structured connectivity both within and
between regions, based on separate experimental observations
for each type of connectivity.

Within-region recordings show that neural activity during
tasks often lies on a low-dimensional manifold (26, 34). Rank-one
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connectivity can generate arbitrary one-dimensional dynamics
(35), serving as a starting point for modeling structured low-
dimensional activity. Many standard neural-network models,
including Hopfield networks (36), ring attractors (37), and
autoencoders (38), use low-rank connectivity. Furthermore,
our model combines rank-one and disordered within-region
connectivity. As shown by Mastrogiuseppe and Ostojic (26),
such networks can produce chaotic activity, fixed points, or both,
depending on the relative strengths of rank-one vs. disordered
connectivity.

Cross-region rank-one connections are based on observed
communication subspaces between cortical areas. In particular,
Semedo et al. (39) found that only a low-dimensional subspace
of V1 activity, distinct from the subspace capturing most V1
variance, correlates with activity in V2. Similar communication-
subspace structure has been identified in visual processing (40),
motor control (41, 42), attention (43), audition (22), and brain-
wide activity (44). Low-rank cross-region connectivity offers a
simple explanation for these subspaces, but of course is not
the only explanation. Alternative hypotheses, such as global
fluctuations or shared input, were considered less likely based
on anatomy, spatial selectivity, and persistence under anesthesia
by the authors of the original study (in the visual cortex). Here, we
adopt low-rank connectivity for its simplicity, data compatibility,
and, as we discuss in the next section, functional utility.

Biologically, low-rank cross-region connectivity, which acts as
a type of bottleneck, can be implemented either anatomically
or effectively [Fig. 1B; (26, 45)]. An anatomical bottleneck
would involve a set of intermediary neurons between two areas
(Fig. 1 B, Top). These neurons, assumed to be linear with fast
time constants, would read out activity from the source region
and broadcast it to the target region (46). This framework also
accommodates thalamocortical loops as anatomical bottlenecks
between cortical regions (this complements existing models
where thalamic nuclei create loops within a cortical area;
such loops can be selectively modulated via basal-ganglia in-
hibition, controlling interregion communication). Alternatively,
an effective bottleneck would arise from direct, monosynaptic
connections between source and target regions with a low-rank
structure (Fig. 1 B, Bottom). A simple example of this occurs
when all connections from a source to a target region have the
same strength and sign, corresponding to a rank-one matrix that
is sensitive only to the mean activity of the source region.

Under the interpretation of an effective bottleneck, the rank-
one constraint results in a synaptic coupling from a neuron in
region � to a neuron in region � that is proportional to the
product of two scalar variables: n��i and m��j . These variables are
associated with the emitter and receiver populations, respectively.
Such couplings, expressed as products of pre- and postsynaptic
terms, arise naturally in neuroscience as a consequence of
Hebbian plasticity.

Finally, while we use rank-one matrices, a more realistic model
might involve higher-rank matrices, or matrices with smoothly
decaying singular values. We find that even rank-one matrices
induce rich multiregion activity structure, providing an adequate
starting point.

Functional Significance of Low-Rank Cross-Region Connectiv-
ity. A rank-one connectivity matrix implements an activity-
dependent bottleneck: the transmission of activity from source
region � to target region� depends on the alignment of activity in
� with the row space of the connecting low-rank matrix. This row
space, given by the span of n�� , represents the communication

subspace in our model. The bottleneck then projects this filtered
activity into target region � through the column space of the
matrix, given by the span of m�� .

This connectivity structure allows selective communication
between regions, controlled by the geometry encoded in T ���.
To illustrate this mechanism, consider an activity pattern ��i in
region �. The activity communicated to region � is proportional
to the projection N−1∑N

i=1 n
��
i �

�
i . For a generic pattern ��i

(e.g., induced by the disordered connectivity ��ij ), this projection
is of order 1/

√
N , vanishing as N → ∞. However, if ��i has

a component aligned with n�� , this projection remains of order
unity.

For such alignment to occur, there must exist a region � such
thatm��, which delivers input to region �, has a component along
n�� . This component is precisely T ���. Consequently, high-
dimensional chaotic activity cannot propagate between regions
as N → ∞, ensuring that only structured, low-dimensional
signals are transmitted.

DMFT

Mean-field theory is an analytical approach that describes large
systems using a small set of summary statistics called order
parameters. This method provides an exact description as N →
∞ and a good approximation for large, finite N . DMFT extends
this concept by introducing time-dependent order parameters
to capture the temporal evolution of activity (29, 47). We now
present the order parameters in the DMFT description of our
multiregion network model and the equations governing their
dynamics.

Order Parameters. Our multiregion model exhibits two types
of dynamics: high-dimensional chaotic fluctuations from i.i.d.
connectivity, and low-dimensional excitation within or between
regions due to low-rank connectivity. These dynamics are
described by distinct sets of order parameters.

High-dimensional fluctuations are characterized by correlation
functions, which capture the temporal structure of chaotic
fluctuations. For each region �, we define correlation functions
for the (pre)activations:

Δ�(t, t ′) =
1
N

N∑
i=1

x�i (t)x�i (t ′), [5a]

C�(t, t ′) =
1
N

N∑
i=1

��i (t)��i (t ′). [5b]

Low-dimensional signal transmission within and between
regions is described by currents, following the terminology of
Perich et al. (12). These currents are consolidated in the matrix
S��(t), defined by

dS��(t)
dt

= −S��(t) +
1
N

N∑
i=1

n��i �
�
i (t). [6]

The current S��(t) represents the activity in region � that is
transmitted to region � (plus a low-pass filter).

Routing and Nonrouting Regions. The current matrix provides
crucial information about activity flow between regions. We
classify regions as routing or nonrouting based on their role

4 of 11 https://doi.org/10.1073/pnas.2404039122 pnas.org
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in signal transmission. We say that a region � is routing if it
transmits signals between other regions, indicated by at least one
nonzero off-diagonal element in the �-th column of the current
matrix, S:,�(t); and at least one nonzero off-diagonal element
in the �-th row, S�,:(t). In contrast, we say that a region � is
nonrouting if all elements of its corresponding row and column
in the current matrix are zero, except possibly for the diagonal
element, S��(t).

As we will demonstrate through exact solutions of the DMFT
equations, a region may become nonrouting when its own
activity is too strong, preventing signal flow. One way for this to
occur is if the region’s activity aligns with its internal structured
connectivity, resulting in a nonzero diagonal element, S�� 6= 0.

Experimentally, routing of this type could be detected through
analyses similar to those used by Semedo et al. (39). By
computing the communication subspace for a source region
during spontaneous activity, one could see how activity patterns
line up with that subspace during a task; the overlapping activity
would be the routed signal.

Dynamical Mean-Field Equations. In the mean-field picture,
currents interact according to

dS��(t)
dt

= −S��(t) + H��(t), where [7a]

H��(t) =  �(t)
R∑
�=1

T ���S��(t), [7b]

where  �(t) =  (Δ�(t, t)) is the average gain of neurons in
region �. The function  (Δ) performs a Gaussian average:

 (Δ) =
〈
�′(x)

〉
x , [8]

where x ∼ N (0,Δ). Thus, while standard neural networks have a
vector dynamics shaped by a matrix, in our framework, region-to-
region interactions, defined by the current order parameters, have
a matrix dynamics shaped by a third-order tensor. Meanwhile,
Δ�(t, t ′) satisfies:(

1 +
d
dt

)(
1 +

d
dt ′

)
Δ�(t, t ′)

= (g�)2C�(t, t ′) +
R∑

�,�=1
U���H��(t)H��(t ′), [9]

These equations are closed by expressing C�(t, t ′) in terms
of Δ�(t, t ′) via C�(t, t ′) = C(Δ(t, t ′),Δ(t, t),Δ(t ′, t ′)),
where C(Δ12,Δ11,Δ22) propagates preactivation correlations to
activation correlations:

C(Δ12,Δ11,Δ22) =
〈
�(x1)�(x2)

〉
x1,x2

, [10]

where (x1, x2) ∼ N (0,�).  (Δ) and C(Δ12,Δ11,Δ22) can be
evaluated analytically (SI Appendix).

Thus, the DMFT provides a set of deterministic, causal
dynamic equations for the region-specific two-point functions
and currents. While their derivation is relatively straightforward,
solving them analytically is challenging due to their nonlinear
and time-dependent structure, as well as the tensorial form of the
interactions. In the next section, we show that by assuming certain
symmetry properties of T ���, we can, remarkably, derive a rich

and instructive class of time-independent and time-dependent
solutions.

For the remainder of the paper, we assume U��� = ��� for all
�, focusing on the role of T ���. Geometrically, this means that
inputs from other regions into a target region � are organized in
orthogonal subspaces.

Symmetric Effective Interactions and Fixed
Points

We now set out to derive exact solutions to the DMFT equations.
In general, to simplify the analysis of many-body interactions, a
natural choice is to assume symmetry. In standard neural net-
works, symmetric interactions ensure that the system converges
to fixed points, precluding limit cycles and chaos. However,
enforcing symmetry in the DMFT system is challenging because
the effective interactions among the currents form a third-order
tensor, T ���.

To clarify the structure of the interactions between currents
in the DMFT, we rewrite the right-hand side of the current
dynamics as  �(t)

∑R
�,�=1 T̂

��,��S��(t), where

T̂ ��,�� = ���T ��� [11]

is a R2-by-R2 dynamics matrix governing the linearized inter-
action of the R2 currents (its spectrum is closely related to
that of J��ij ; SI Appendix). We expect T̂ ��,�� to influence the
current dynamics similarly to how the synaptic weight matrix
shapes neuronal dynamics in a standard neural network. Thus, a
natural choice is to impose symmetry on the matrix T̂ ��,�� , i.e.,
T̂ ��,�� = T̂ ��,�� . This reduces the number of free parameters
from O(R3) to O(R2) by requiring

T ��� = ���c�� , where c�� = c��. [12]

The presence of ��� in T ��� implies that each region � interacts
either directly with itself (� = �) or indirectly with itself through
an intermediate region, � (� 6= �). Moreover, the symmetry of
c�� implies that the coupling through which region � interacts
with itself via region � is equivalent to that for region � interacting
with itself via region �. This is illustrated in Fig. 2A.

To make analytical progress, we further constrain the symmet-
ric matrix c�� to have a “rank-one plus diagonal” form, with only

BA

Fig. 2. (A) Restriction to the effective-interaction tensor T��� corresponding
to enforcing symmetry. This constraint sets T��� = ���c�� , where c�� is
a symmetric matrix. nonzero overlaps between connectivity patterns are
indicated by colored auras, with equal colors indicating equal overlaps. In this
scenario with R = 4 regions, the connectivity has 10 independent parameters:
4 for direct and 6 for indirect effective self-interactions. (B) Illustration of
subspace-based routing in the case of symmetric effective interactions. When
the activity subspace defined by the span of m��i in region � is excited,
bidirectional communication between regions � and � is suppressed, and
vice versa, due to the nonlinear dynamics of the network.
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O(R) parameters,

c�� = u�u� + ���h�, [13]

where u� and h� are arbitrary vectors. This form provides a
minimal setting in which one has independent control over the
strength of direct vs. indirect self-interactions, which are captured
by the quantities

a� = (u�)2 + h�, and b� = (u�)2, [14]

respectively. If b� = 0, region � is not connected to the rest of
the network, and its dynamical repertoire is that of a rank-one
network with disorder, studied in ref. 26.

Disorder-Free Case. We begin by examining the case without
disorder in connectivity: g� = 0 for all �. Symmetric interactions
typically lead to fixed points, which we find to be the case here
(although we were unable to derive a global Lyapunov function).
For the parameterization of T ��� defined above, the fixed points
S��0 of the currents satisfy:

S��0 =  �0 (u�u� + ���h�)S��0 , [15a]

 �0 =  (A�), where A� =
R∑
�=1

(S��0 )2. [15b]

Here, A� represents the squared L2-norm of row � of the
current matrix. In the absence of disorder, A� is the variance
of preactivations in region �. (Note that with a general form of
U���, this would become a Mahalanobis norm.) These equations
yield a combinatorial family of stable and unstable fixed points,
which can be categorized based on whether each region is routing
or nonrouting. Notably, within this family of fixed points, a
region is routing if, and only if, it produces no self-exciting
activity, i.e., S�� = 0. This directly illustrates Key Idea 1: the
tension between signal generation and transmission.

For a given fixed point, let Sroute ⊆ {1, . . . , R} be the subset
of regions in routing mode. For a region � /∈ Sroute, Eq. 15a
simplifies to:

 �0 =
1
a�

, [16a]

(S��0 )2 = A�, [16b]

S��0 = S��0 = 0 for all � 6= �. [16c]

On the other hand, for a region � ∈ Sroute, Eq. 15 implies:

 �0 =
1
b�

, [17a]

S��0 = 0, [17b]

S��0 u� = S��0 u� for all � ∈ Sroute \ {�}. [17c]

Additionally, for each region � ∈ Sroute:

A� =
∑

�∈Sroute\{�}

(S��0 )2. [18]

Combining these results, we have

A� =
{
 −1 ( 1

a�
)

for � /∈ Sroute
 −1 ( 1

b�
)

for � ∈ Sroute.
[19]

Here,  −1(1/x) = 2(x2
− 1)/� is a monotonically increasing

function of x, so A� increases with a� or b�. These equations
determine the row normsA� for all� and the pattern of (non)zero
entries in the current matrix for a given bipartition of routing
and nonrouting regions. For regions in routing mode, there is
remaining freedom in choosing the current-matrix off-diagonal
entries, resulting in a manifold of fixed points. We analyze the
dimension and topology of this manifold in SI Appendix, finding
that the set of stable fixed points (see below) forms multiple
disconnected continuous attractors in current space, with the
number depending on the values of A�.

Stability Analysis. There are 2R possible ways to assign routing
and nonrouting modes to regions, producing a combinatorial
class of fixed points. To determine which states are stable, we
perform a stability analysis, finding that region � is in routing
mode if, and only if, a� < b�. To demonstrate this, we consider
a first-order perturbation ���(t) about a fixed point S��0 and
define a “local energy:”

E [�] =
1
2

R∑
�,�=1

(
���

u�

)2
. [20]

We show in SI Appendix that ∂tE ≤ 0 for all ��� if and only if
S��0 is in a configuration claimed to be stable. Moreover, when

A

B

C

Fig. 3. Structure of fixed points in networks with symmetric effective
interactions. The same information for three different cases is shown on
the Left, center, and Right. (A) Values of a� and b� in the R = 5 regions.
(B) Dynamics of sampled neurons (Left) and of incoming currents (Right) in
large simulations for each region. (C) Visualization of the steady-state current
matrix S��0 (Left) and of the L2-norms of the rows of this matrix (Right).
We show row-norms from the simulations (red dots) alongside analytical
predictions (blue dot). In the leftmost plots, all regions are in nonrouting
mode. In the Middle plots, region 1 is in nonrouting mode and regions 2 to 4
are in routing mode. In the rightmost plots, regions 1 and 2 are in nonrouting
mode and regions 3 to 5 are in routing mode.
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S��0 is stable, there exists a family of choices for ��� that lead
to ∂tE = 0. These directions correspond to translation along a
continuous attractor manifold.

In this setup, a region � can be toggled between routing and
nonrouting modes by adjusting the relative magnitudes of a� and
b� (Fig. 3). This approach to routing contrasts with traditional
methods that manipulate individual neurons or synapses through
neuromodulation, inhibition, or gain modulation. In particular,
the gain  �0 is nonzero in both routing and nonrouting modes,
unlike conventional gain-modulation methods that would be
analogous to driving  �0 to zero to achieve a nonrouting
state. Through the interplay between connectivity geometry
and nonlinear recurrent dynamics, our model aligns neural
activity with subspaces that either facilitate or inhibit cross-region
communication, reflecting Key Idea 2.

Effect of Disorder. Maintaining the simplified parameterization
of T ���, we now introduce disorder into the model by allowing
nonzero values of g�. This addition potentially leads to high-
dimensional chaotic fluctuations. While these fluctuations can-
not propagate through the rank-one cross-region couplings (up to
small, O(1/

√
N ) fluctuations around the mean-field currents),

they can disrupt low-dimensional signal transmission between
regions, illustrating the tension between signal generation and
transmission, Key Idea 1.

Despite the presence of disorder, the symmetric structure
of the interactions ensures that the currents converge to fixed
points, S��0 . However, the network’s behavior is now controlled
not just by the values of a� and b�, but also by the disorder
strength g�. This richer dynamical landscape is naturally
characterized by the correlation function Δ�(t, t ′), which
captures, for example, how quickly the network forgets its state
at a given time through chaotic mixing. We focus on stationary
solutions where Δ(t, t ′) = Δ(�), with � = t − t ′. Under these
conditions, we can solve the DMFT equations analytically,
determining Δ�(0), Δ�(∞) = lim � →∞Δ�(�), and A�
(Fig. 4 A and B and SI Appendix).

The solutions exhibit the following structure, as depicted in
Fig. 4 C–E. For small g�, high-dimensional fluctuations are
absent in region �, resulting in Δ�(�) = Δ�(0) = Δ�(∞).
This constant correlation function indicates that neural activity
maintains perfect memory of its state, reflecting purely structured,
nonchaotic dynamics. Routing and nonrouting modes behave as
in the disorder-free case (Eqs. 16–18), with current stability
determined by the relative magnitudes of a� and b�. Here, we
assume that b� > a� so that, without disorder, all regions are
in routing mode (the behavior we will describe as disorder is
increased is similar for b� < a�, but with changes to self-current
rather than cross-region current).

This nonchaotic regime persists even for g� > 1, demonstrat-
ing that currents from within the region (nonrouting mode) or
from other regions (routing mode) can suppress chaos. However,
compared to the disorder-free case, A� is reduced, indicating
that disorder impedes currents. As g� increases further, a phase
transition occurs. High-dimensional fluctuations begin to coexist
with currents, characterized by Δ�(∞) < Δ�(0) and a decaying
Δ�(�). The decay of Δ�(�) to a nonzero value Δ�(∞) indicates
that the network partially forgets its state through chaotic mixing,
while maintaining some structure through the persistent currents.
In this regime, A� decreases even more.

At sufficiently large g�, another phase transition takes place,
leading to a “disorder-dominated” nonrouting mode. Here,
Δ�(�) decays from Δ�(0) > 0 to Δ�(∞) = 0, and A� = 0.

A B

C

D

E

Fig. 4. Structure of activity in networks with disorder and symmetric
effective interactions among regions. (A) Relationship between A� and g�
for various values of b� in the DMFT. Dashed lines indicate nonphysical
solutions of the DMFT equations corresponding to unstable fixed points. (B)
Solutions for the two-point function Δ�(�) for the parameter values indicated
by the markers in (A). (C–E) are the same as (A–C) in Fig. 3, but with disorder,
whose levels are shown in (A). All regions have g� > 1, so regions produce
high-dimensional fluctuations unless tamed by current-based activity. In
the leftmost plots, chaos is suppressed in all regions, and all regions are
in routing mode. In the Middle plots, all regions are in routing mode, and
high-dimensional fluctuations exist alongside the structured current-based
activity in region 1. In the rightmost plots, region 1 is in disorder-dominated
nonrouting mode, and regions 2 to 5 are in routing mode. In chaotic
regimes (Middle and Right columns), the interregion currents converge to
steady values despite ongoing chaotic dynamics. This convergence occurs
because the readout patterns project out the chaotic fluctuations, though
smallO(1/

√
N) fluctuations remain around the mean-field values.

The complete decay of the correlation function indicates that
the network completely forgets its state at any given time,
reflecting fully chaotic dynamics with no underlying structure.
The values of  �0 and Δ�(�) are no longer influenced by
a� and b�. Instead, Δ�(�) follows the solution described
by Sompolinsky et al. (29), as if no structured connectivity
were present. This disorder-dominated phase differs from the
“structure-dominated” nonrouting mode of the disorder-free
case in a crucial way: signal transmission from other regions is
impeded by high-dimensional fluctuations rather than structured
self-exciting activity, resulting in S��0 = 0.

Importantly, these disorder-induced phase transitions occur
independently across regions, a consequence of the low-rank
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structure of cross-region connectivity preventing the propagation
of high-dimensional fluctuations.

To summarize, the behavior of Δ�(�) reveals how network
activity aligns with different subspaces: when Δ�(�) is constant,
activity lies in structured subspaces defined by currents; when
it decays to a nonzero value, activity combines both current-
based structure and chaotic components; and when it decays to
zero, activity explores all dimensions chaotically. This progression
illustrates Key Idea 2: signal routing is achieved not by silencing
regions, but by controlling which subspaces of activity are
excited or suppressed through the interplay of connectivity and
dynamics.

Asymmetric Effective Interactions

We now relax all constraints on the effective interactions,
including symmetry, allowing T ��� to have arbitrary elements.
This can lead to a richer set of dynamic behaviors in the network.
To analyze these dynamics, we focus on the spectrum of T̂ ��,�� ,
the matrix representation of T ���.

The leading eigenvalue of T̂ ��,�� strongly influences the
network’s behavior. When this eigenvalue is real, the currents
typically converge to fixed points. In contrast, a complex-
conjugate pair of leading eigenvalues, especially with a large
imaginary part, often results in limit cycles in the currents. We
have not observed chaotic attractors in the currents.

To characterize the interplay between current dynamics,
within-region high-dimensional fluctuations, and the leading
eigenvalue of T̂ ��,�� , we conducted a comprehensive analysis.
We focused on networks with R = 2 regions, setting disorder
levels g1 = g2 = 1.5. For each complex number � on a grid
in the upper half-plane, we generated 50 random effective-
interaction tensors T ��� whose associated matrix T̂ ��,�� had �
as its leading eigenvalue. For each tensor, we numerically solved
the DMFT equations to obtain the two-point functions Δ�(t, t ′)
and currents S��(t). We then analyzed the normalized two-point
function:

Δ̂�(�) =
Δ�(t, t + �)√
Δ�(t)Δ�(t + �)

, t � 1, [21]

where t is large enough to disregard transients. The behavior
of Δ̂�(�) indicates the presence and nature of high-dimensional
fluctuations in region �. In particular, similar to the interpre-

tation of Δ�(�) in the previous section, when Δ̂�(�) decays
to a nonzero value, region � displays chaotic fluctuations with
underlying structure due to currents providing order-one mean
activity. This structure can also be seen in the currents themselves.
Conversely, Δ̂�(�) decaying to zero indicates that there are only
chaotic fluctuations in region �.

Fig. 5 summarizes our findings. As the real part of � increases
with a small imaginary part, we observe a progression from
pure chaos, to fixed points coexisting with chaos, to pure fixed
points (Fig. 5 A and C ). Strikingly, when the imaginary part
of � is larger, we see a parallel series of transitions: from
chaos, to limit cycles coexisting with chaos, to pure limit
cycles. The coexistence of limit cycles with high-dimensional
fluctuations is particularly intriguing, as it demonstrates that reli-
able, time-dependent routing can occur beneath apparently noisy
activity.

The dashed circle in Fig. 5A indicates the support of the bulk
spectrum of J��ij . For nontrivial current dynamics to emerge, the
leading eigenvalue of T̂ ��,�� must lie outside this circle. This
illustrates how high-dimensional fluctuations within regions (the
bulk) can impede structured cross-region communication (the
outlier), highlighting the tension between signal generation and
transmission (Key Idea 1).

To assess the predictive power of the leading eigenvalue, we
computed the entropy of the empirical distribution over the five
possible dynamic states at each � (Fig. 5B). For large imaginary
parts of �, we observe a reliable transition from chaos to limit cy-
cles coexisting with high-dimensional fluctuations as the real part
increases, with a critical value near Re� = 1.5. In regions where
pure fixed points or limit cycles dominate, the behavior becomes
more variable, especially where different states intermingle.

We next explored how modulating disorder can shape
multiregion dynamics and signal routing. Fig. 6 shows two cases
with fixed T ��� in networks of R = 3 regions. In both cases,
introducing disorder in region 1 switched the current dynamics
from fixed points to limit cycles. Importantly, this transition did
not occur by silencing region 1; instead, the gains of all regions
remained of order unity throughout the transition (Fig. 6C ). This
supports Key Idea 2, demonstrating that signal routing is achieved
by shaping the alignment of neural activity with particular
subspaces, rather than through traditional gain modulation
methods.

To further understand time-dependent signal routing, we
analyzed the spectrum of  �(t)T̂ ��,�� across time (Fig. 6D).

A B C

Fig. 5. Dynamic behaviors in networks with asymmetric effective interactions (R = 2 regions). (A) Most common dynamic behavior across 50 realizations of
T���, as a function of the leading eigenvalue � of T̂��,�� . (B) Entropy of the distribution over dynamic behaviors at each �. (C) Example time series of currents
S�� (Top) and two-point functions Δ̂�(�) (Bottom) for each dynamic behavior. In the Top row, colors represent different currents; in the Bottom row, black and
gray lines represent the two regions.
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A.I

A.II B.II

C.II

E.II

D.II

B.I

C.I

E.I

D.I

Fig. 6. Modulating multiregion dynamics through disorder in a 3-region
network. Two examples (1 and 2) show how introducing disorder in region
1 switches current dynamics from fixed points to limit cycles. (A) Spectra
of T̂��,�� before (I) and after (II) silencing region 1. The resulting switch
from real to complex-conjugate pair of the leading eigenvalue suggests that
introducing disorder in region 1 will generate limit cycles. (B) Time evolution
of currents S�� , with colors indicating the target region �. (C) Normalized
two-point functions Δ̂�(�) for increasing disorder g1 in region 1. (D) Time-
dependent gains  �(t). (E) Time-evolving spectra of  �(t)T̂��,�� , showing
how the eigenvalue distribution changes throughout the limit cycle.

During limit cycles, the leading eigenvalues hover around unity,
indicating that current dynamics are regulated through sequential
subspace activation and subtle gain adjustments.

These findings demonstrate that in both fixed-point and
dynamic attractor scenarios, adjusting effective interactions or
disorder levels can shift signal routing through the network. This
routing occurs not by silencing entire regions, but by altering
which subspaces are active, leading to phase transitions in current
dynamics while maintaining nonzero gains. This mechanism
aligns with both Key Ideas 1 and 2, highlighting the tension
between signal generation and transmission and emphasizing the
role of subspace activation in controlling signal flow.

Input-Driven Switches

Our model shows that a region’s ability to transmit signals
depends on the balance between its within-region activity and

cross-region communication, as described in Key Idea 1. While
this balance can be modified by adjusting synaptic couplings, as
demonstrated in the previous sections, external inputs offer an
alternative method for controlling routing that is more amenable
to experimental probing (22).

We extended the DMFT to incorporate inputs, introducing
effective interactions that capture overlaps between recurrent
connectivity and input vectors (SI Appendix). To illustrate this,
we examined a simple example with 5 regions. Initially, region
1 exhibits strong self-exciting activity and does not route signals.
When we add input to region 1 that other regions can read
out and feed back, it transitions to a state where region 1
communicates with the network and its self-exciting activity is
suppressed. This input-driven switch mirrors the connectivity-
based switches studied earlier and exemplifies one of many
possible scenarios for input-based activity modulation.

The specific effects of inputs depend on the multiregion
connectivity geometry encoded in T ���. Experimentally, inputs
could be provided to a region using techniques like optogenetics.
Given knowledge of cross-region subspace geometry, one could
predict resulting network-level activity changes. This geometry
could be estimated using methods similar to those developed by
Semedo et al. (39).

Discussion

In this work, we focused on rank-one communication subspaces
with jointly Gaussian loadings. This connectivity provides
a starting point for studying more complicated forms of
communication between areas. For example, we can extend our
rank-one connectivity model to rank-K subspaces, facilitating
richer, higher-dimensional communication. Maintaining
the ranks of these subspaces as intensive prevents high-
dimensional chaotic fluctuations from propagating between
regions, preserving the modularity of the disorder-based gating
mechanism. While increasing the rank increases the number of
dynamic variables in the mean-field picture (namely, by a factor of
K ), the Gaussian distribution determining the loadings restricts
the complexity of their effective interactions. An alternative is
to use a mixture-of-Gaussians distribution with C components,
allowing for more complex interactions, such as chaotic dynamics
among the currents (35, 48). Together, these extensions expand
the effective-interaction tensor by three indices, detailed in a
tensor diagram in SI Appendix. Finally, an important future
direction will be to incorporate biological constraints, such as
excitatory and inhibitory neurons and nonnegative firing rates.
The work of (30) is a promising starting point.

How might the connectivity geometry defining T ��� be
established? We propose that this structure could emerge
through the pressures of a learning process. Consider a region �
that needs to perform a computation based on a one-dimensional
signal from region �. In this case, establishing a rank-one cross-
region coupling matrix m��(n��)T , which could occur through
Hebbian plasticity, is sufficient. The preactivations in � lie within
the subspace S� = span{m��

}
R
�=1. For � to use a signal from �,

the row space spanned by n�� must then overlap with S� . This
overlap implies thatT ��� = N−1(n��)Tm��

6= 0 for at least one
�. This simplified picture of learning neglects the fact that regions
are connected in loops. Future research is required to explore
how regions learn tasks in a recurrently connected network,
addressing the “multiregion credit assignment” problem.

The question “What defines a brain region?” is, at its
essence, about how within-region connectivity differs from
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cross-region connectivity. Previous work, such as that by Aljadeff
et al. (49), studied networks with disordered couplings both
within and between regions, but found that chaotic activity is
globally distributed, undermining the notion of distinct regions.
In contrast, our model, which uses low-rank cross-region
connectivity, leads to rich functional consequences and modular
activity states, making it a more interesting candidate framework
for regional organization.

The symmetric connectivity geometry we studied, char-
acterized by c�� , has not yet been observed in functional
communication-subspace analyses or current connectomics data.
However, as larger-scale mammalian connectomes become
available in the coming years, it would be valuable to compute
observables like T ���. Given its interesting functional conse-
quences, our symmetry-constrained version would be a natural
structure to look for, analogous to how researchers have examined
correlations between reciprocal synapses in existing datasets.

A notable aspect of our model and theoretical approach is
its alignment with existing methods for neural-data analysis.
Specifically, the technique developed by Perich et al. (12)
for analyzing multiregion neural recordings involves training a
recurrent network to mimic the data and then decomposing
the activity in terms of cross-region currents. Intriguingly, our
model’s low-dimensional mean-field dynamics offer a closed
description in terms of these currents, rather than relying solely
on single-region quantities such as two-point functions. This
alignment strongly supports the use of current-based analyses in
neural data interpretation.

Furthermore, our model could be adapted to fit multiregion
neural data using approaches akin to those of Valente et al. (50).
Subsequently reducing the model to the mean-field description
we derived could provide insights into the dynamics of the
fitted model. This positions our work as a bridge connecting
practical recurrent network-based data analysis methods to a
deeper analytical understanding of network dynamics.

Another data-driven application of our framework lies in
analyzing connectome data (51). Large-scale reconstructions of
neurons and their connections are now available for flies (52, 53),
parts of the mammalian cortex (54), and other organisms (55).
For connectome datasets where regions are identified, the cross-
region connectivity could be approximated as having a low-
rank structure, allowing for a reduction using our mean-field

framework. This enables a comparison of predicted neuronal
dynamics with recorded activity.

In scenarios where regions are not already defined, our
framework suggests solving the “inverse problem:” determining
a partitioning of neurons into regions such that the cross-
region connectivity is well approximated by low-rank matrices.
Developing a specialized clustering algorithm for this purpose and
applying it to connectome data, such as from the fly, would be
interesting. Even in cases where anatomical knowledge suggests
certain region definitions, identifying “unsupervised regions”
based on the assumption of low-rank cross-region interactions
could offer an interesting functional perspective on regional
delineation.

Materials and Methods

Additional methods and results are provided in SI Appendix. SI Appendix,
section 1 describes the analytical approach to characterizing the spectrum of the
connectivity matrix. SI Appendix, section 2 provides closed-form expressions for
key functions in the DMFT analysis. SI Appendix, section 3 extends the model
to include disorder in cross-region couplings. SI Appendix, section 4 details
the mathematical analysis of fixed point stability using a local energy function.
SI Appendix, section 5 characterizes the structure of fixed points using convex
geometry. SI Appendix, section 6 generalizes the DMFT equations to include the
effects of disorder. SI Appendix, section 7 further examines the dynamics of net-
works with unconstrained effective interactions. SI Appendix, section 8 extends
the analysis to include external inputs and demonstrates input-driven switching
behavior. SI Appendix, section 9 describes a generalization of the model to more
complex connectivity structures. SI Appendix, section 10 situates our model
within a broader class of low-rank mixture-of-Gaussians networks, demonstrating
its relationship to and distinctions from more general low-rank models.

Data, Materials, and Software Availability. Code for simulations and anal-
ysis have been deposited in https://github.com/davidclark1/MultiregionDMFT
(56).
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