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Neural networks are high-dimensional nonlinear dynamical systems that process information through the
coordinated activity of many connected units. Understanding how biological and machine-learning networks
function and learn requires knowledge of the structure of this coordinated activity, information contained, for
example, in cross covariances between units. Self-consistent dynamical mean field theory (DMFT) has
elucidated several features of random neural networks—in particular, that they can generate chaotic activity
—however, a calculation of cross covariances using this approach has not been provided. Here, we calculate
cross covariances self-consistently via a two-site cavity DMFT. We use this theory to probe spatiotemporal
features of activity coordination in a classic random-network model with independent and identically
distributed (i.i.d.) couplings, showing an extensive but fractionally low effective dimension of activity and a
long population-level timescale. Our formulas apply to a wide range of single-unit dynamics and generalize
to non-i.i.d. couplings. As an example of the latter, we analyze the case of partially symmetric couplings.
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Neural circuits drive behavior, sensation, and cognition
through the coordinated activity of many synaptically
coupled neurons. Similarly, artificial neural networks solve
tasks through distributed computations among neuronlike
units with trained couplings. Understanding the structure of
collective activity in such high-dimensional dynamical
systems is a key problem in neuroscience and machine
learning, made complicated by nonlinear units and hetero-
geneous couplings.
In addressing this problem, studying networks with

random couplings has been fruitful [1–6]. Gradient descent
dynamics often depend sensitively on the random initial
couplings [7–10]. Random couplings can provide a sub-
strate for computation (see reservoir computing, [11–14])
and are a parsimonious model of background connectivity
upon which structure can be introduced [15]. In certain
cases, trained networks learn low-rank additions to random
connectivity [16,17]. Finally, chaotic random networks
model asynchronous cortical dynamics observed in vivo
[18]. More broadly, high-dimensional nonlinear dynamical
systems with quenched disorder are important models in
physics and ecology [1,15,19–30].
Such disordered dynamical systems are commonly

studied using dynamical mean-field theory (DMFT), which
reduces the dynamics to a single-site problem, allowing for
self-consistent calculation of single-unit temporal statistics.
However, key properties of the structure of collective
activity are not visible in single units, but only in their
correlations. One such property is the effective dimension,
which measures the degree of coordination of network
activity via the approximate number of excited collective
modes [5,31–37]. This quantity determines a network’s

ability to classify inputs [38–41], learn via Hebbian
plasticity [38,42], generalize learned structure [38,42,43],
and generate dynamics [14,44]. If the effective dimension is
low, the network state can be inferred from a small number
of units [45–48].
Correlations and dimensionality have been studied in

random feed-forward networks [4,5], but such approaches
do not generalize to recurrent dynamics due to the need to
enforce self-consistency of network activity. In this Letter,
we develop a two-site DMFT, based on the cavity method,
for high-dimensional nonlinear dynamical systems with
quenched disorder, yielding a mean-field picture of a
perturbatively coupled pair of units through which joint
statistics are determined. The calculation applies across a
broad range of dynamics for the individual units; we
assume only that single-unit order parameters can be
computed through usual DMFT techniques. Although
our results are thus quite general, we apply them to
the network model of Sompolinsky et al. [1] with inde-
pendent and identically distributed (i.i.d.) couplings, which
displays a generic transition to chaos at a critical coupling
variance [22]. We show analytically that collective activity
is predominantly confined to a subspace of extensive but
fractionally low dimension, previously observed only in
simulations [31,32,34]. Our theory also reveals that col-
lective modes have a typical timescale much longer than
that of individual units. Finally, we show that our theory
can capture the effect of non-i.i.d. connectivity that could
arise through learning and analyze the case of partially
symmetric couplings.
Model and order parameters.—We study a network

of N units with pre-activations xiðtÞ and activations
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ϕiðtÞ ¼ ϕðxiðtÞÞ, where ϕð·Þ is a nonlinearity. The network
has quenched disorder in its couplings, Jij ∼

i:i:d:N ð0; g2=NÞ.
The network dynamics are

T½xi�ðtÞ¼ ηiðtÞ; ηiðtÞ¼
X
j

JijϕjðtÞ; ð1Þ

where T½·� is a causal functional that specifies the
single-unit dynamics, allowing for generalization beyond
the conventional case of [1], T½x�ðtÞ ¼ ð1þ ∂tÞxðtÞ,
to models with complex single-unit dynamics (e.g.,
[2,29,49–52]). Our calculation applies to both linear
and nonlinear T½·�. In the latter case, individual pre-
activations xiðtÞ may be highly non-Gaussian. We assume
the system is temporally fluctuating and statistically
stationary.
The classic DMFT of [1] calculates the self-

averaging autocovariance (two-point) function
CϕðτÞ ¼ hϕiðtÞϕiðtþ τÞit ¼ hϕiðtÞϕiðtþ τÞiJ [similarly,
CxðτÞ] through an effective single-site picture. For a given
realization of J, to zeroth order in 1=

ffiffiffiffi
N

p
, the individual

local fields ηiðtÞ are Gaussian with vanishing cross cova-
riances. The network thus decouples into N noninteracting
processes, T½x�ðtÞ ¼ ηðtÞ, where ηðtÞ is a Gaussian field
with zero mean and autocovariance CηðτÞ ¼ g2CϕðτÞ.
The problem is closed by self-consistently enforcing
CϕðτÞ ¼ hϕðtÞ ϕðtþ τÞiη. CxðτÞ may be determined sub-
sequently. In the model of [1], this single-site problem can be
solved analytically due to the linearity of T½·� (in general, it is
amenable to numerical solution; see, e.g., [2,25,26,29,52]).
In this Letter, we go beyond this single-site picture by

calculating the structure of time-lagged cross covariances
between units, Cϕ

ijðτÞ ¼ hϕiðtÞϕjðtþ τÞit ∼ 1=
ffiffiffiffi
N

p
[simi-

larly, Cx
ijðτÞ], i ≠ j. These are non-self-averaging, so we

examine the self-averaging four-point function

ψϕðτÞ¼NhCϕ
ijðτ1ÞCϕ

ijðτ2ÞiJ; i≠ j; ð2Þ

and, analogously, ψxðτÞ. Our main result is that, for
N → ∞, ψϕðτÞ is given in Fourier space by

ψϕðωÞ¼ ðMðωÞ−1ÞCϕðω1ÞCϕðω2Þ;

whereMðωÞ¼ 1

j1−2πg2Sϕðω1ÞSϕðω2Þj2
; ð3Þ

and SϕðτÞ ¼ hδϕiðtÞ=δηiðt − τÞit ¼ hδϕiðtÞ=δηiðt − τÞiJ
is the self-averaging linear response function given,
as in the single-site problem, by SϕðωÞ ¼ CηϕðωÞ=CηðωÞ,
where CηϕðτÞ ¼ hηðtÞϕðtþ τÞiη (by the Furutsu-
Novikov theorem; Appendix A). For the x variables, we
show

ψxðωÞ ¼ jUðωÞj2Cϕðω1ÞCϕðω2Þ
þ UðωÞCxϕðω1ÞCxϕðω2Þ þ H:c:;

where UðωÞ ¼ 2πg2Sxðω1ÞSxðω2Þ
1 − 2πg2Sϕðω1ÞSϕðω2Þ

: ð4Þ

Here, CxϕðτÞ ¼ hxðtÞϕðtþ τÞiη and SxðτÞ is defined in
analogy with SϕðτÞ. Notably, once the two-point and linear
response functions have been computed in the single-site
picture (analytically or numerically), the four-point func-
tions are given analytically by Eqs. (3) and (4), which apply
for all T½·�. These new order parameters encode important
aspects of collective activity.
Two-site cavity DMFT.—Our derivation is based on a

two-site [53], dynamical [25,54] version of the cavity
method [55,56] (Fig. 1). We add two cavity units to
the network and refer to its original N units as the
reservoir. We use i; j∈ f1;…; Ng and μ; ν∈ f0; 00g for
reservoir- and cavity-unit indices, respectively. The
cavity units are bidirectionally connected to the reservoir
through Jiμ and Jμi, and to one another through Jμν. In the
absence of the cavity units, reservoir units follow trajec-
tories ϕiðtÞ. When the cavity units are introduced, these
are perturbed by δϕiðtÞ¼

R
t dt0

P
j S

ϕ
ijðt;t0Þ

P
μJjμϕμðt0Þ,

where Sϕijðt;t0Þ¼δϕiðtÞ=δηjðt0Þ. Inserting the perturbed
trajectories ϕiðtÞ þ δϕiðtÞ in Eq. (1) yields cavity-unit
dynamics,

T½xμ�ðtÞ ¼ ημðtÞ þ
1ffiffiffiffi
N

p
X
ν

Z
t
dt0Fμνðt; t0Þϕνðt0Þ; ð5Þ

where we have defined the order-one variables

ημðtÞ ¼
X
i

JμiϕiðtÞ; ð6Þ

FIG. 1. Overview of the two-site cavity DMFT. A cavity is
created at the sites of two auxiliary units (called the cavity units)
while the rest of the network, the reservoir, generates chaotic
activity. The cavity units are then introduced; their effect is felt
perturbatively by the reservoir. Dynamical equations for the
cavity units yield a pair of perturbatively coupled mean-field
equations representing a pair of units. Self-consistency conditions
are constructed by noting that the cavity pair is statistically
equivalent to any reservoir pair.
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Fμνðt; t0Þ ¼
ffiffiffiffi
N

p �X
ij

JμiJjνS
ϕ
ijðt; t0Þ þ Jμνδðt − t0Þ

�
: ð7Þ

In these definitions, the couplings and dynamic variables
are mutually independent due to the cavity construction.
Here, η0ðtÞ and η00 ðtÞ are cavity fields, the local fields felt
by the cavity units when they are not coupled to the
reservoir. Because of the independence property, η0ðtÞ and
η00 ðtÞ are jointly temporally Gaussian, with ∼1=

ffiffiffiffi
N

p
cross

covariance, to first order in 1=
ffiffiffiffi
N

p
[57].

Working in this two-site picture, we first determine an
expression for Cϕ

000 ðωÞ. Using the joint Gaussianity of η0ðtÞ
and η00 ðtÞ and the decoupling of sites 0 and 00 under the
time average, both valid to first order in 1=

ffiffiffiffi
N

p
, gives

Cϕ
000 ðωÞ ¼ 2π

�
jSϕðωÞj2Cη

000 ðωÞ þ
1ffiffiffiffi
N

p ½ðF000 ðωÞSϕðωÞÞ�

þ F000ðωÞSϕðωÞ�CϕðωÞ
�
; ð8Þ

where Cη
000 ðωÞ ¼

X
ij

J0iJ00jC
ϕ
ijðωÞ; ð9Þ

and FμνðτÞ ¼ hFμνðt; t − τÞit (Appendix B). We square and
J-average Eq. (8), yielding ψϕðωÞ. F�

000 ðωÞ, F000ðωÞ, and
Cη
000 ðωÞ are non-self-averaging; their six two-point func-

tions under the J average are

ΓF000F000 ðωÞ ¼ hF000 ðω1ÞF000 ðω2ÞiJ; ð10aÞ

ΓF�
000F000ðωÞ ¼ hF�

000 ðω1ÞF000ðω2ÞiJ; ð10bÞ

ΓF�
000C

η

000
ðωÞ ¼

ffiffiffiffi
N

p
hF�

000 ðω1ÞCη
000 ðω2ÞiJ; ð10cÞ

ΓCη

000C
η

000
ðωÞ ¼ NhCη

000 ðω1ÞCη
000 ðω2ÞiJ; ð10dÞ

with the two others following from 0 ↔ 00 symmetry. The
J averages can be evaluated due to the independence of
the couplings and dynamic variables in Eqs. (7) and (9).
The Γ���ðωÞ functions are determined self-consistently by
noting that the cavity pair is statistically equivalent to any
reservoir pair, closing the equations. For i.i.d. J, all of these
vanish except ΓCη

000C
η

000
ðωÞ and ΓF000F000 ðωÞ. The former is

given immediately by

ΓCη

000C
η

000
ðωÞ ¼ g4ðCϕðω1ÞCϕðω2Þ þ ψϕðωÞÞ: ð11Þ

The latter requires self-consistency. Doing the J average,

ΓF000F000 ðωÞ ¼ g4Sϕðω1ÞSϕðω2Þ

þ g4NhSϕ
000 ðω1ÞSϕ000 ðω2ÞiJ þ

g2

2π
; ð12Þ

where SϕμνðτÞ ¼ hSϕμνðt; t − τÞit. Evaluating and substituting
Sϕ
000 ðωÞ ¼ 2πN−1

2SϕðωÞ2F000 ðωÞ in Eq. (12) gives

ΓF000F000 ðωÞ ¼
g2

2πð1 − 2πg2Sϕðω1ÞSϕðω2ÞÞ
: ð13Þ

Then, squaring and J-averaging Eq. (8) gives

ψϕðωÞ¼ð2πÞ2½g4jSϕðω1ÞSϕðω2Þj2ΓCη

000C
η

000
ðωÞ

þΓF000F000 ðωÞSϕðω1ÞSϕðω2ÞCϕðω1ÞCϕðω2ÞþH:c:�;
ð14Þ

whose solution gives Eq. (3). Similar steps recover Eq. (4).
Effective dimension.—We now specialize to the model

of [1], with T½x�ðtÞ ¼ ð1þ ∂tÞxðtÞ and ϕð·Þ ¼ tanhð·Þ, for
which the single- and two-site pictures can be treated
analytically (Appendix C). This model is chaotic for g > 1.
We use Eqs. (3) and (4) to probe the structure of collective
activity in the chaotic state, starting with the effective
dimension. Let Σa

ij ¼ haiðtÞajðtÞit denote the covariance
matrix of the variables a∈ fx;ϕg and λai its eigenvalues.
Following [31–36,38,46,47] (see Ref. [5] for the feed-
forward-network case), we define the effective dimension
as the participation ratio of this spectrum,

PRa ¼ 1

N
ðPiλ

a
i Þ2P

iðλai Þ2
; ð15Þ

where the factor 1=N makes this an intensive quantity,
0 ≤ PRa ≤ 1. PRa provides a linear notion of dimension-
ality, corresponding roughly to the minimal dimension,
relative to N, of a subspace in which the strange attractor
can be embedded with small L2-norm distortion. This
embedding subspace can be obtained from simulation results
using principal components analysis (PCA) [46–48]. We
evaluate PRa for N → ∞ by writing the numerator and
denominator of Eq. (15) as the squared trace and Frobenius
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FIG. 2. (a) Effective dimension PRa for a∈ fx;ϕg. Lines:
theory. Dots: simulations of size N ¼ 2500. Median values over
50 disorder realizations are shown. (b) Activity variance in the
chaotic state along eigenmodes of the stability matrix at the trivial
fixed point with g ¼ 5. Locally unstable modes with large real
part have far greater variance in the chaotic state than those with
small real part.
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norm, respectively, of Σa, then expressing these quantities
using DMFT order parameters, yielding

PRa ¼ Cað0Þ2
Cað0Þ2 þ ψað0; 0Þ : ð16Þ

Evaluating ψað0; 0Þ using Eqs. (3) and (4) yields agreement
with simulations [Fig. 2(a)]. PRa grows with g as the activity
becomes more tempestuous. PRϕ > PRx, reflecting the
dimension-expanding effect of the nonlinearity, studied in
feed-forward networks [5,38,58]. Finally, N × PRa ∼ N,
consistent with “extensive chaos” [34].
In the “Ising limit” g → ∞, CϕðτÞ, ψϕðτÞ, CxðτÞ=g2, and

ψxðτÞ=g4 take on limiting forms. As a result, PRϕ and PRx

saturate at finite values, PRx ¼ 6.02% and PRϕ ¼ 12.6%
[Fig. 2(a), dashed lines; Appendix C]. Thus, the effective
dimension is bounded substantially below unity for arbi-
trarily large g, implying that structured couplings are
required to increase the dimension further.
We next study PRa near the phase transition at g ¼ 1,

defining ϵ ¼ g − 1 ≪ 1. To leading order in ϵ, Cað0Þ ¼ ϵ
and ψað0;0Þ¼ c=ϵ where c ¼ Fð0; 0Þ ¼ 4.27 (F described
below). Thus, PRa ¼ ϵ3=c. This scaling provides an
interesting contrast with a linear stability analysis.
Stability at the trivial fixed point, xiðtÞ ¼ 0, is determined
by the spectrum of J, which, at large N, is a uniform disk
of radius g [59,60]. The fractional area of the spectrum
past the stability line, ReðλÞ ¼ 1, is ∼ϵ3=2. By contrast,
PRa ∼ ϵ3 ≪ ϵ3=2. Thus, locally unstable modes contribute
to the chaotic state in a nonuniform manner. Simulations
indicate that this nonuniform contribution of modes also
holds at finite ϵ [Fig. 2(b)].
Temporal structure of cross covariances.—We have

focused on the effective dimension, expressed via ψaðτÞ
for τ ¼ ð0; 0Þ. We now consider the full τ dependence.
Whereas CaðτÞ describes temporal structure of individual
units, ψaðτÞ describes temporal structure embedded in
cross covariances. That ψaðτ; τÞ ≠ ψaðτ;−τÞ reflects the
dissipative, time-irreversible nature of the network. The
analytical form of ψϕðτÞ, Eq. (3), agrees with simulations
across τ (Figs. 3). Near the phase transition,

ψaðτÞ¼ 1

ϵ
Fðϵ2τþ;ϵτ−Þ; τ� ¼ ðτ1� τ2Þ=

ffiffiffi
2

p
; ð17Þ

where FðτÞ is a decaying order-one function (Appendix C).
The timescale of ψaðτÞ along the antidiagonal, τ1 ¼ −τ2, is
∼1=ϵ, in agreement with the single-unit timescale [1].
Strikingly, the timescale along the diagonal, τ1 ¼ τ2, is
∼1=ϵ2, longer than the single-unit timescale by a (diverging)
factor of 1=ϵ. This 1=ϵ2 timescale is in agreement with the
inverse Lyapunov exponent [1]. This long timescale is also
present at finite ϵ: defining ψRMSðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψϕðτ; τÞ

p
, we find

that ψRMSðτÞ has a much slower decay than CϕðτÞ far from
the transition [Fig. 3(b)].
As this long timescale is not present in individual units, it

must arise in collective activity. This motivated us to
examine, in simulations, the timescales of collective modes
obtained by PCA. The timescales of PCs decrease across
the variance-ranked PC index, implying that slow modes
account for the most variance. As expected, the leading PCs
have timescales many times longer than those of individual
units [Fig. 4(a)]. The density of timescales, pðτÞ, has an
exponential tail. If this exponential form persists for
N → ∞, the timescales of leading PCs should diverge as
∼ logN. Simulating networks with sizes spanning two
decades confirmed this [Fig. 4(b)]. Thus, long timescales
emerge in unstructured networks, albeit with only a logN
divergence. Unlike in prior proposals (e.g., [2,49,61,62]),
these long timescales are not visible in individual units, but
arise at the collective level through the temporal structure of
correlations.
Differential contributions to cross covariances.—The

cavity picture provides a partitioning of cross covariances
into three sources, each contributing to Cϕ

000 ðτÞ at leading
order, 1=

ffiffiffiffi
N

p
, in Eq. (8) (upon taking the inverse Fourier

transform). First, units 0 and 00 receive input from the same
reservoir units, inducing a correlation between the cavity
fields [Eq. (8), Cη

000 ðτÞ term]. Second, units 0 and 00 have
direct connections [Eq. (8), delta-function terms in F000 ðτÞ
and F000ðτÞ]. Third, unit 00 projects to the reservoir,
producing reverberating activity read out by unit 0, and

(a) (b)

FIG. 3. (a) ψϕðτÞ. (b) ψRMSðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψϕðτ; τÞ

p
. Solid lines:

theory. Dots: simulations. Dotted lines: rescaled single-unit
autocovariance CϕðτÞ for comparison. N ¼ 2500. Median values
across 50 disorder realizations are shown.

(a) (b)

FIG. 4. Timescales of ϕ principal components (PCs). (a) Den-
sity of PC timescales (autocovariance FWHM) in simulations.
Dashed lines: single-unit timescales. N ¼ 2500, 50 disorder
realizations. (b) Timescales of leading PCs vs N. g ¼ 10. Median
timescales across 50 disorder realizations are shown. Error bars:
standard error of the mean.
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vice versa [Eq. (8), non-delta-function terms in F000 ðτÞ and
F000ðτÞ]. Isolating the terms in ψϕðτÞ corresponding to
these three sources reveals that cavity-field correlations
dominate near the phase transition, with the other two
becoming larger further away from the transition (Fig. 5).
Direct connections induce the shortest-timescale correla-
tion. Reverberatory activity induces a slower correlation
peaked at finite time lag. Cavity fields provide the slowest
correlation.
Structured disorder.—Neural circuits undergo synaptic

plasticity during learning. Thus, a key question is how
structure in J shapes collective activity. Our calculation
offers a natural method of incorporating structure in J,
namely, by enforcing it in the couplings involving cavity
units (0 or 00) when self-consistently determining the two-
point functions of Eq. (10). This works when the structure
in J is local in the sense that the statistical structure of the
entire J matrix is fully characterized by its effect on the
couplings involving the cavity units.
To demonstrate this, we calculated ψϕðτÞ under partially

symmetric structure in the couplings, hJijJjii ¼ g2ρ=N,
where ρ is a symmetry parameter. In this case, ψϕðτÞ has
the same form as Eq. (3) but with

MðωÞ → MðωÞ 1 − j2πσðSϕðω1ÞÞ�Sϕðω2Þj2
j1 − 2πσðSϕðω1ÞÞ�Sϕðω2Þj2

; ð18Þ

where σ ¼ g2ρ (Appendix D). Additionally, rather than
being negligible, the on-diagonal kernels F00ðt; t0Þ and
F0000 ðt; t0Þ are self-averaging with mean

ffiffiffiffi
N

p
σSϕðt − t0Þ,

resulting in an order-one self-coupling in the single-site
problem. The equivalence of symmetric structure and an
effective self-coupling is likely generic (e.g., such a
term arises in networks with ongoing Hebbian
plasticity but with the two-point function, rather than
the linear response function, serving as the self-coupling
kernel [52]).
Our theory yields agreement of PRϕ and ψϕðτÞ with

simulations (Fig. 6). The effective dimension, PRϕ, has a
nontrivial relationship with the symmetry parameter ρ: near
ρ ¼ 0, increasing ρ increases or decreases PRϕ depending
on whether g is small or large, respectively; for all g,
making ρ sufficiently large decreases PRϕ.
Certain types of nonlocal structure can be handled with

an expanded set of order parameters. One example is an
intensive number groups of units with parametrized
within- and across-group coupling statistics, modeling
cell types in neural circuits (e.g., excitatory and inhibitory
neurons). This could be generalized to a continuous group
index, modeling spatial connectivity gradients. We find it
unlikely that structure in J with nontrivial global con-
straints (e.g., orthogonality) could be handled by our
cavity approach.
Discussion.—We calculated the structure of time-

lagged cross covariances in high-dimensional nonlinear
dynamical systems with quenched disorder, allowing us to
probe collective features of activity in chaotic neural
networks. Prior studies have analyzed cross covari-
ances in noise-driven linear models with nonchaotic
dynamics [33,63–66]. In this case, our theory readily
recovers the frequency-dependent effective dimension
PRxðωÞ ¼ ð1 − 2πg2jSxðωÞj2Þ2 (see, e.g., Eqs. 10, 21 of
Hu and Sompolinsky [36], who derived this from random
matrix theory). While we used a cavity approach, deriving
our results from fluctuations around the saddle point of a
path integral would be interesting [67–69].
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Our calculation is agnostic about the single-unit dynam-
ics T½·� and can account for structure in J. It will be
interesting to see how the dimension of activity is shaped by
both types of structure. An important extension will be to
incorporate time-dependent inputs, which can suppress
chaos, an effect crucial to learning [44,70–72]. In the case
of inputs with low-dimensional structure, one expects a
collapse from extensive to intensive effective dimension
when chaos is suppressed.
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Appendix A: Furutsu-Novikov theorem.—Let
T½x�ðtÞ ¼ ηðtÞ, where ηðtÞ is Gaussian with two-point
function Cηðt; t0Þ. Let Sϕðt; t0Þ ¼ hδϕðtÞ=δηðt0Þiη,
ϕðtÞ ¼ ϕðxðtÞÞ. This can be expressed as a functional
integral,

Sϕðt; t0Þ ¼
Z

Dηe−S½η�
δϕðtÞ
δηðt0Þ ; ðA1Þ

where S½η� ¼ 1
2

R
ds

R
ds0½Cη�−1ðs; s0ÞηðsÞηðs0Þ þ const.

We write Dη ¼ dηð¬t0Þdηðt0Þ, where dηð¬t0Þ is the
measure over all points on η excluding ηðt0Þ. The integral
over ηðt0Þ can be evaluated via scalar integration by parts,

Z
dηðt0Þe−S½η� δϕðtÞ

δηðt0Þ ¼
Z

ds½Cη�−1ðt0; sÞ

×
Z

dηðt0Þe−S½η�ηðsÞϕðtÞ; ðA2Þ

where the boundary term vanishes for positive definite
Cηðt; t0Þ. Reintroducing the dηð¬t0Þ integration gives

Sϕðt; t0Þ ¼
Z

ds½Cη�−1ðt0; sÞCηϕðs; tÞ; ðA3Þ

where Cηϕðs; tÞ ¼ hηðsÞϕðtÞiη. Assuming stationarity, we
define CηðτÞ ¼ Cηðt; tþ τÞ, CηϕðτÞ ¼ Cηϕðt; tþ τÞ and
SϕðτÞ ¼ Sϕðt; t − τÞ. Then, SϕðτÞ ¼ ð½Cη�−1 � CηϕÞðτÞ. In
Fourier space, SϕðωÞ ¼ CηϕðωÞ=CηðωÞ.

Appendix B: Deriving Eq. (8).—We first write a
solution to Eq. (5) accurate to first order in 1=

ffiffiffiffi
N

p
,

ϕμðtÞ ¼ ϕfree
μ ðtÞ þ 1ffiffiffiffi

N
p

Z
t
dt0Sϕμμðt; t0Þ

×
Z

t0

dt00
X
ν

Fμνðt0; t00Þϕfree
ν ðt00Þ; ðB1Þ

where T½xfreeμ �ðtÞ ¼ ημðtÞ and ϕfree
μ ðtÞ ¼ ϕðxfreeμ ðtÞÞ. We

multiply the 0 and 00 components and t average, working
to first order in 1=

ffiffiffiffi
N

p
. The two cross terms arising

from ϕfree
μ ðtÞ and the integral terms are readily evaluated

by noting that the 0 and 00 components decouple under
the time average to zeroth order in 1=

ffiffiffiffi
N

p
, yielding

the second and third terms in Eq. (8). The nontrivial
step is to evaluate hϕfree

0 ðtÞϕfree
00 ðtþ τÞit. Since η0ðtÞ and

η00 ðtÞ can be treated as jointly temporally Gaussian with
cross covariance Cη

000 ðτÞ ∼ 1=
ffiffiffiffi
N

p
, we Taylor expand

hϕfree
0 ðtÞϕfree

00 ðtþ τÞit in Cη
000 ðτÞ via Price’s theorem [73],

which states (in a sufficiently abstract form) that, for
x ∼N ð0;ΣÞ and a function FðxÞ,

∂

∂Σij
hFðxÞix ¼

�
∂
2FðxÞ
∂xi∂xj

�
x

; ðB2Þ

which is apparent upon writing the Gaussian integral
corresponding to the lhs in Fourier space. Applying the
functional version of this gives the first-order expansion

hϕfree
0 ðtÞϕfree

00 ðtþ τÞit
¼

Z
ds

Z
ds0

�
δϕfree

0 ðtÞ
δη0ðsÞ

δϕfree
00 ðtþ τÞ
δη00 ðs0Þ

�
t
Cη
000 ðs0 − sÞ

¼
Z

ds
Z

ds0Sϕð−sÞSϕðτ − s0ÞCη
000 ðs0 − sÞ: ðB3Þ

Denoting this by Cϕfree

000 ðτÞ, we have in Fourier space

Cϕfree

000 ðωÞ ¼ 2πjSϕðωÞj2Cη
000 ðωÞ, the first term in Eq. (8).

Appendix C: Sompolinsky et al. DMFT.—The model
of [1] is recovered via T½x�ðtÞ ¼ ð1þ ∂tÞxðtÞ and
ϕð·Þ ¼ tanhð·Þ. Squaring the single-site picture
ð1þ ∂tÞxðtÞ ¼ ηðtÞ, and averaging over η reveals that
CxðτÞ obeys Newtonian dynamics in a Mexican-hat
potential, VðCxÞ. CxðτÞ is obtained by numerically
integrating this equation of motion. Then, CϕðτÞ is
given in Fourier space by CϕðωÞ ¼ ð1þ ω2ÞCxðωÞ=g2.
The linear responses are SxðωÞ ¼ 1=ð1þ iωÞ,
SϕðωÞ ¼ α=ð1þ iωÞ (α ¼ hϕ0ðxÞiη). Defining XðωÞ ¼
ð1þ iω1Þð1þ iω2Þ and ν ¼ g2α2,

ψϕðωÞ ¼
����� XðωÞ

XðωÞ − ν

����
2

− 1

	
Cϕðω1ÞCϕðω2Þ; ðC1aÞ

PHYSICAL REVIEW LETTERS 131, 118401 (2023)

118401-6



ψxðωÞ ¼
�
2jXðωÞj2 − ν2

jXðωÞ − νj2 − 1

	
Cxðω1ÞCxðω2Þ: ðC1bÞ

In evaluating Eq. (4) to obtain Eq. (C1), we noted that
CxϕðωÞ ¼ αCxðωÞ due to the Gaussianity of x.
Limit of g → 1þ. Near the phase transition, Cxð0Þ ∼ ϵ

(ϵ ¼ g − 1). Taylor expanding VðCxÞ to fourth order in Cx

and analytically integrating the resulting equation of
motion gives CxðτÞ ¼ CϕðτÞ ¼ ϵ sechðτϵ= ffiffiffi

3
p Þ to first

order in ϵ [67]. The large-τ autocovariance behavior is
controlled by the quadratic term in VðCxÞ, so including
higher-order terms in the Taylor expansion gives
corrections decaying faster than ∼1=ϵ. Thus, in Fourier
space, CaðωÞ ¼ ð3π=2Þ1=2sechð ffiffiffi

3
p

πω=2ϵÞ at leading order
in ϵ. Noting that ν ¼ 1þ V 00ð0Þ, we have, from the
expanded potential, ν ¼ 1 − ϵ2=3 at leading nontrivial
order. The divergent contributions to the inverse transforms
of both ψxðωÞ and ψϕðωÞ come from the term
Caðω1ÞCaðω2Þ=jXðωÞ − νj2. This contribution is

ψaðτÞ ¼ 3

4

Z
dωeiϵω

Tτ
sech


 ffiffi
3

p
πω1

2

�
sech


 ffiffi
3

p
πω2

2

�
ϵ2ð1=3 − ω1ω2Þ2 þ ðω1 þ ω2Þ2

:

ðC2Þ
Along the antidiagonal,ω1 þ ω2 ¼ 0, the integrand diverges
as ∼1=ϵ2. The divergent part is a ridge with thickness ∼ϵ,
corresponding to the first and second terms in the denom-
inator having similar magnitudes. The ∼1=ϵ2 height and ∼ϵ
thickness give a ∼1=ϵ divergence of ψaðτÞ. Defining
ω� ¼ ðω1 � ω2Þ=

ffiffiffi
2

p
, we rotate the ridge onto the ω− axis.

The ∼ϵ thickness of the ridge along the ωþ axis suggests
replacing ωþ → ϵωþ, yielding

ψaðτÞ ¼ 1

ϵ

Z
dω�eiðϵ

2ωþτþþϵω−τ−Þ Fðωþ;ω−Þ
2π

; ðC3aÞ

Fðω�Þ ¼
3π

2

sech2

 ffiffi

3
p

πω−
23=2

�
ð1=3þ ω2

−=2Þ2 þ 2ω2þ
; ðC3bÞ

where τ� ¼ ðτ1 � τ2Þ=
ffiffiffi
2

p
as defined in the main text.

Limit of g → ∞. Defining C̄xðτÞ ¼ CxðτÞ=g2,
the Newtonian dynamics in this limit approach
∂
2
τ C̄xðτÞ ¼ C̄xðτÞ − ð2=πÞ arcsin ðC̄xðτÞ=C̄xð0ÞÞ where
C̄xð0Þ ¼ 2ð1 − 2=πÞ [67]. Meanwhile, ν ¼ 1=ðπ − 2Þ.
Numerically integrating these dynamics allows us to
evaluate Eq. (C1) numerically, producing the saturating
values of PRa given in the main text.

Appendix D: Partially symmetric disorder.—For finite
σ ¼ g2ρ, hFμμðt; t0ÞiJ ¼ ffiffiffiffi

N
p

σSϕðt − t0Þ, modifying the
single-site picture by introducing an order-one self-
coupling. This self-coupling can be absorbed into the
dynamics functional by replacing T½·� with

Tσ½x�ðtÞ ¼ T½x�ðtÞ þ σ

Z
t

−∞
dt0 Sϕðt − t0Þϕðt0Þ: ðD1Þ

In our case, T½x�ðtÞ ¼ ð1þ ∂tÞxðtÞ. We solve the single-
site DMFT numerically, using the Furutsu-Novikov
theorem to evaluate SϕðτÞ. We now self-consistently
determine the two-point functions of Eq. (10) under
correlated disorder. ΓF000F000 ðωÞ and ΓCη

000C
η

000
ðωÞ are the

same as for of i.i.d. disorder. Rather than vanishing, we
have also

ΓF�
000F000ðωÞ ¼

σ

2πð1 − 2πσðSϕðω1ÞÞ�Sϕðω2ÞÞ
; ðD2aÞ

ΓF�
000C

η

000
ðωÞ

¼ ð2πÞ2Γ�
F000F000

ðωÞΓF�
000F000ðωÞ½Sϕðω1Þ��Cϕðω2Þ: ðD2bÞ

Using these when squaring and J-averaging Eq. (8) yields
the solution for ψϕðωÞ, Eq. (18). The DMFT predictions
for PRϕ and ψϕðτÞ agree with simulations (Fig. 6).
For ρ approaching unity, this model [49] and related

models [62] have been reported to exhibit temporally
nonstationary, “glassy” dynamics, and it is possible that
nonstationary behavior appears for ρ < 1. Our calculation
assumes temporal stationarity, but nevertheless matches
simulations up to ρ ¼ 0.6 (modulo small discrepancies that
are likely attributable to numerics). Numerically solving
the single-site DMFT for larger values of ρ is challenging
due to the rapid growth of the autocorrelation timescale
with ρ.
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