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In neural circuits, synaptic strengths influence neuronal activity by shaping network dynamics, and
neuronal activity influences synaptic strengths through activity-dependent plasticity. Motivated by this
fact, we study a recurrent-network model in which neuronal units and synaptic couplings are interacting
dynamic variables, with couplings subject to Hebbian modification with decay around quenched
random strengths. Rather than assigning a specific role to the plasticity, we use dynamical mean-field
theory and other techniques to systematically characterize the neuronal-synaptic dynamics, revealing a
rich phase diagram. Adding Hebbian plasticity slows activity in already chaotic networks and can
induce chaos in otherwise quiescent networks. Anti-Hebbian plasticity quickens activity and produces
an oscillatory component. Analysis of the Jacobian shows that Hebbian and anti-Hebbian plasticity
push locally unstable modes toward the real and imaginary axes, respectively, explaining these
behaviors. Both random-matrix and Lyapunov analysis show that strong Hebbian plasticity segregates
network timescales into two bands, with a slow, synapse-dominated band driving the dynamics,
suggesting a flipped view of the network as synapses connected by neurons. For increasing strength,
Hebbian plasticity initially raises the complexity of the dynamics, measured by the maximum Lyapunov
exponent and attractor dimension, but then decreases these metrics, likely due to the proliferation of
stable fixed points. We compute the marginally stable spectra of such fixed points as well as their
number, showing exponential growth with network size. Finally, in chaotic states with strong Hebbian
plasticity, a stable fixed point of neuronal dynamics is destabilized by synaptic dynamics, allowing any
neuronal state to be stored as a stable fixed point by halting the plasticity. This phase of freezable chaos
offers a new mechanism for working memory.
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I. INTRODUCTION

Computations in neural circuits are commonly thought
to be implemented through the coordinated dynamics of
neurons [1–3]. Under this view, the role of synaptic
connectivity is to sculpt neuronal dynamics to implement
computations. In actuality, synapses undergo plasticity over
diverse timescales in response to neuronal activity and
thus constitute dynamic degrees of freedom in their own
right [4]. A more accurate picture of computation in neural
circuits should involve the coupled dynamics of neurons
and synapses. Indeed, it is possible that a network is
better described by the states of its synapses than of its
neurons [5]. Here, we study the consequences of treating

neurons and synapses as mutually coupled dynamic var-
iables on equal footing.
Synaptic dynamics are often divided into short-term

plasticity, which operates on short timescales and depends
on presynaptic activity [6–11], and long-term plasticity,
which acts on much longer timescales and depends on
both pre- and postsynaptic activity [12–15]. However,
short-term forms of Hebbian plasticity exist, suggesting
that the timescale distinction is little more than a con-
vention [16–24] (see Ref. [25] for a review). Hebbian
plasticity is more powerful than the presynaptic variety due
to its ability to create attractor states of neuronal dynamics,
the basis of Hopfield networks [26]. We are therefore
motivated to introduce ongoing Hebbian plasticity in a
recurrent network, without necessarily imposing a
separation of timescales between neuronal and synaptic
dynamics. This has unexpected, computationally useful
consequences, a key example being freezable chaos, a
phase in which a stable fixed point of neuronal dynamics is
destabilized through synaptic dynamics. By contrast, intro-
ducing presynaptic plasticity to this model simply adds
an effective constant input to each neuron (Appendix A).
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Our work thus provides a theoretical impetus for further
experimental investigation of ongoing Hebbian plasticity
mechanisms.
The view that synapses serve solely to sculpt neuronal

dynamics is mirrored in machine learning. In artificial
neural networks, weights are trained via gradient descent,
then fixed. However, allowing weights to be modulated by
the activity of the units has been shown to confer computa-
tional advantages [27–31], particularly in tasks requiring
short-term memory storage [32]. For example, Ba et al.
[33] showed that recurrent networks benefit from a combi-
nation of “slow weights” trained via backpropagation and
“fast weights” that undergo activity-dependent updates (the
model we study is essentially the continuous-time counter-
part of this proposal). In practice, recurrent networks have
been superseded by transformers [34]. While these models
were not neuroscientifically motivated, Schlag et al. [35]
showed that linearized transformers [36] are equivalent to
fast weight programmers [37], a recurrent network with
activity-dependent weight updates [38].
A major impediment to studying neuronal-synaptic

dynamics, in both neuroscience and machine learning, is
that the analytical methods developed for nonplastic net-
works often do not translate to plastic networks, particu-
larly when the neuronal and synaptic timescales are not
well separated. For example, a common simplification is to
study nonplastic networks with linear neuronal dynamics;
however, such networks become highly nonlinear when
synaptic plasticity is introduced [39]. Moreover, synaptic
degrees of freedom increase the dimension of phase space
from OðNÞ to OðN2Þ. In studying and training nonplastic
networks, the theory of random networks has played a
crucial role [40]. In seminal work, Sompolinsky et al. [41]
showed that random recurrent networks exhibit a phase
transition to high-dimensional chaotic activity at a critical
coupling variance [42]. While this analysis was in firing-
rate (nonspiking) networks with fully unstructured cou-
plings, key phenomena, such as the transition to chaos,
generalize to spiking networks with more realistic distri-
butions over couplings [43]. Here, we extend this approach
to plastic networks—that is, we develop a theory for such a
model in the thermodynamic limit, compute its phase
diagram, and characterize its dynamics—thereby providing
a foundation for understanding how coupled neuronal-
synaptic dynamics could underlie computation.

II. MODEL

We augment the random-network model of Sompolinsky
et al. [41] with dynamic couplings. There are N neuronal
units with preactivations xiðtÞ and activations ϕiðtÞ ¼
ϕ(xiðtÞ), where ϕð·Þ is a nonlinearity. Throughout, we
use ϕð·Þ ¼ tanhð·Þ. Neurons interact through all-to-all time-
dependent couplings WijðtÞ according to the neuronal
dynamics:

ð1þ ∂tÞxiðtÞ ¼
X
j

WijðtÞϕjðtÞ: ð1Þ

Concurrently, WijðtÞ displays synaptic dynamics. We first
express these couplings as a sum of quenched and
fluctuating terms,

WijðtÞ ¼ Jij þ AijðtÞ; ð2Þ

where Jij ∼N ð0; g2=NÞ provides quenched disorder. The
fluctuating term AijðtÞ follows a local plasticity rule,

ð1þ p∂tÞAijðtÞ ¼
k
N
ϕiðtÞϕjðtÞ; ð3Þ

where k is the sign and strength of the plasticity, which is
Hebbian or anti-Hebbian for k > 0 or k < 0, respectively,
and p is the synaptic decay timescale in units in which the
neuronal decay timescale is unity. We do not require
p ≫ 1, though a reasonable constraint from biology is
p > 1 since the synaptic timescale is unlikely to be shorter
than the neuronal timescale. The couplings WðtÞ include
self-connections (on diagonals) with the same dynamics as
non-self-connections (off diagonals). However, the effect of
these self-connections on each neuron is ∼1=

ffiffiffiffi
N

p
, and thus

is negligible as N → ∞. The full set of dynamic variables
comprises theN neurons xiðtÞ andN2 fluctuating couplings
AijðtÞ. We study their collective dynamics as a function of
g, k, and p as N → ∞ [Fig. 1(a)].
Because AðtÞ is an average over outer products for each

order-one time step and decays with timescale p, it has rank
of order p or smaller. Given that p is order one (not order
N), the approximate rank of AðtÞ is intensive. Note that
Jij ∼ 1=

ffiffiffiffi
N

p
and AijðtÞ ∼ 1=N, so plasticity is vanishingly

weak at the single-synapse level as N → ∞. Nevertheless,
because AðtÞ is approximately intensive rank, the random
and fluctuating couplings both have order-one macroscopic
effects. This is because when neuronal activity exhibits
alignment to the states encoded in AðtÞ, the J and AðtÞ
terms each contribute an order-one input to neurons, as
made clear by the mean-field analysis in Sec. IV. Further
intuition for this scaling can be obtained from the spectra
of J and AðtÞ; the chosen scaling implies that the
eigenvalues of both matrices are order one, allowing the
modes they drive in the network to compete on equal
footing. This scaling of low-rank structure relative to
randomness at individual synapses is generic in models
in which the couplings are the sum of random and low-rank
terms [44–46] (but see Ref. [47] where a ∼1=

ffiffiffiffi
N

p
rank-one

term given by an outer product of orthogonal vectors was
used). The scaling also appears in spiked matrix or tensor
models in statistical physics [48]. In experiments that
measure changes in synaptic strengths, plasticity on this
weak scale could go unnoticed, but nevertheless exert
dramatic influence at the network level.
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III. PHASE DIAGRAM

We summarize the behavior of the model with a phase
diagram in ðg; kÞ parameter space for p ¼ 2.5 [Fig. 1(b)],
noting that constant-p slices of the full ðg; k; pÞ diagram are
similar for order-one values of p. We refer to this phase
diagram for the rest of this section.
For k ¼ 0, the model reduces to that of Sompolinsky

et al. [41] [dashed horizontal line in Fig. 1(b)]. For g > 1,
this nonplastic network is chaotic (i). For g < 1, the trivial
neuronal fixed point of the nonplastic network, xðtÞ ¼ 0N ,
is globally stable and the network is quiescent. In analogy
with the nonplastic network, the plastic network can
produce chaotic activity for g > 1, and the activity is
further shaped by synaptic plasticity. Hebbian plasticity,
k > 0, slows activity (ii), while anti-Hebbian plasticity,
k < 0, quickens activity and generates an oscillatory
component (iii).
For g < 1, the trivial neuronal-synaptic fixed point,

(xðtÞ;AðtÞ) ¼ ð0N; 0N×NÞ, is stable. However, in contrast
to the nonplastic network, this fixed point is not necessarily
globally stable, but coexists with chaotic states for large k
(iv). Thus, Hebbian plasticity can induce dynamic activity
in an otherwise quiescent network. For g < 1, if k is not
large enough to induce dynamic activity, the network is
globally quiescent (v).
In dynamic states, network activity is shaped by a

proliferation of stable fixed points throughout phase space.
In particular, if Hebbian plasticity is strong (hatched
region), there exist stable fixed points to which finite-size
networks settle following transient chaos, accompanied by
the rank of AðtÞ collapsing to unity (vi). Such fixed points
are stable with respect to the combined neuronal-synaptic
dynamics. Their number, which we compute, is exponential
in N.
Two scenarios can lead to transient chaotic states. First,

when g < 1 and k is large enough to induce chaotic activity,
finite-size networks may collapse to the trivial fixed point.

Additionally, when ðg; kÞ is in the hatched region, finite-
size networks may collapse to nonzero fixed points.
Finally, we describe freezable chaos. Consider a chaotic

state with Hebbian plasticity. Suppose we abruptly halt
synaptic dynamics. If k is small, the halted-synapse neuronal
dynamics are chaotic, with no trace of the halt-time neuronal
state in the activity (ii). If k is larger, the halted-synapse
neuronal dynamics are chaotic, but neurons fluctuate around
the halt-time state, so a memory of this state is retained (vii).
If k is sufficiently large, the halted-synapse neuronal
dynamics are nonchaotic; neurons flow to a stable fixed
point near the halt-time state (viii). In all cases, releasing the
synapses returns the network to neuronal-synaptic chaos. As
N → ∞, these three cases, which we label nonfreezable,
semifreezable, and freezable chaos, respectively, are distinct
phases. In freezable chaos, there is, at any instant, a stable
fixed point of neuronal dynamics that is destabilized by
synaptic dynamics. Thus, a stable fixed point can be created
near any neuronal state by halting synaptic plasticity,
enabling a new form of short-term memory storage.

IV. DYNAMICAL MEAN-FIELD THEORY (DMFT)

The temporal structure of network activity is described in
the limit N → ∞ by a dynamical mean-field theory
(DMFT) whose main order parameter is the single-unit
autocovariance (two-point) function,

CðτÞ ¼ hϕiðtÞϕiðtþ τÞiJ; ð4Þ
where we assume statistical stationarity in time. Integrating
the synaptic dynamics, Eq. (3), and inserting this into the
neuronal dynamics, Eq. (1), gives

ð1þ ∂tÞxiðtÞ ¼
X
j

JijϕjðtÞ þ
k
p

Z
t

−∞
dt0e−ðt−t0Þ=p

×

�
1

N

X
j

ϕjðtÞϕjðt0Þ
�
ϕiðt0Þ; ð5Þ

FIG. 1. (a) Dynamics of a pair of neurons (top) and of the synapses through which they are reciprocally coupled (bottom). Synapses
fluctuate about quenched random strengths (dashed lines) in response to pre- and postsynaptic activity according to a Hebbian rule.
(b) Left: phase diagram of the plastic network for p ¼ 2.5. Right: example neuronal traces xiðtÞ from simulations of each phase-diagram
region, with parameters given by the location of the associated square marker.
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where we have separated terms arising from J (first term on
the rhs) and AðtÞ (second term on the rhs). Taking the limit
N → ∞ yields the single-site picture,

ð1þ∂tÞxðtÞ¼ηðtÞþ k
p

Z
t

−∞
dt0e−ðt−t0Þ=pCðt− t0Þϕðt0Þ; ð6Þ

where ηðtÞ is an effective Gaussian field with zero mean
and second-order statistics:

hηðtÞηðtþ τÞiη ¼ g2CðτÞ: ð7Þ

The DMFT is closed by the self-consistency condition:

CðτÞ ¼ hϕðtÞϕðtþ τÞiη: ð8Þ

In the single-site dynamics of Eq. (6), synaptic plasticity
introduces a convolutional self-coupling with a kernel
that depends self-consistently on CðτÞ. For k ¼ 0, the
self-coupling vanishes and the DMFT reduces to that of
Ref. [41], which can be solved analytically. For k ≠ 0, the
nonlinearity of the self-coupling induces a non-Gaussian
distribution over xðtÞ—in particular, a distribution that
becomes increasingly bimodal with larger k due to satu-
ration of the tanh function—so we solve the DMFT
equations using standard numerical techniques [49–54]
(Appendix C 1). The DMFT agrees closely with simula-
tions [Fig. 2(a)].

A. Chaotic states with g > 1

We now examine the solutions CðτÞ of the DMFT. In the
regime where the nonplastic network is chaotic, g > 1,
Hebbian plasticity slows the activity, broadening CðτÞ
[Fig. 2(a), k > 0 solutions]. A network with static, sym-
metric couplings (e.g., the Hopfield network) admits a
Lyapunov function that guarantees convergence to fixed
points [26]. The slow activity generated by Hebbian
plasticity results from competition between J, a random,
asymmetric matrix that promotes dissipative, chaotic
dynamics, and AðtÞ, a symmetric matrix that promotes
convergence to a drifting fixed point that trails the neuro-
nal state.
This competition has an interesting dependence on the

model parameters. For small k and large p, neurons
fluctuate rapidly relative to the synaptic decay timescale,
and the effect of plasticity is averaged out. As k is
increased, synapses slow neurons by attracting the neuronal
state toward its history, permitting a stronger synaptic
signal to be encoded. This stronger signal causes further
neuronal slowing. The interaction of neurons and synapses
in this positive-feedback process causes the timescale of
neuronal fluctuations to diverge as k increases. For large p
and k, finite-size networks can show bistability between a
fast state in which plasticity is averaged out and a slow state
in which synapses drag neurons (Appendix B).
This slowing behavior can also be understood through

the DMFT. We quantify the speed of neuronal fluctuations
by defining the dynamic timescale,

τ� ¼
Z

∞

0

dτ

�
CðτÞ
Cð0Þ

�
2

; ð9Þ

whose dependence on g, k, and p is illustrated in Fig. 2(b).
The size of the integral term in the single-site dynamics
[Eq. (6)] is ∼kτ�=p for τ� ≪ p (and ∼k for τ� ≫ p).
Increasing this term slows xðtÞ, increasing τ�. That τ�
depends on the size of this term, which itself depends on τ�,
produces a positive-feedback loop. Once k is large enough
so that the integral term competes with ηðtÞ, which occurs
when kτ�=p ∼ g, τ� grows rapidly. The inflection of τ� in k
is sharpest for large p or g, in which case kτ�=p and g are
well separated at small k [Fig. 2(b), p ¼ 20].
Under anti-Hebbian plasticity, rather than synapses

attracting the neuronal state to its history, this effect is
repulsive. This quickens the dynamics and adds an oscil-
latory component to the activity, tightening CðτÞ and
creating oscillations during its decay to zero [Fig. 2(a),
k < 0 solutions]. In the single-site picture [Eq. (6)], plas-
ticity modifies the dynamics of xðtÞ by introducing
time-delayed negative feedback, which generically
induces oscillations [55,56]. While finite-size simulations
of the model of [41] show limit cycles, our calculation of
CðτÞ for N → ∞ demonstrates that this anti-Hebbian
oscillatory component is not merely a finite-size effect.
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FIG. 2. Chaotic states with g > 1. (a) CðτÞ from the DMFT
(solid lines) and in simulations (dashed lines) for g ¼ 2, p ¼ 2.5,
and various values of k (indicated by the lower color bar).
(b) Dynamic timescale τ� [Eq. (9)] as a function of k for various
values of g. Dotted line indicates p. (c) Power spectra [normal-
ized such that Sð0Þ ¼ 1] for the autocovariance functions shown
in (a). For anti-Hebbian (k < 0) power spectra, triangular markers
indicate an oscillatory frequency computed from the zero cross-
ings of CðτÞ.
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These oscillations are further characterized by the (nor-
malized) power spectrum SðfÞ ¼ jĈðfÞj2=jĈð0Þj2, where
ĈðfÞ denotes the Fourier transform of CðτÞ [Fig. 2(c)].
Rather than containing a peak at a nonzero frequency, the
power spectra corresponding to the anti-Hebbian autoco-
variance functions in Fig. 2(a) possess a range of large
frequencies [though SðfÞ develops a nonzero peak for
smaller values of g, not shown]. Point estimates of the
dominant oscillatory frequency computed from the first
three zero crossings of CðτÞ roughly capture the frequency
scale at which SðfÞ decays [Fig. 2(c), triangular markers].

B. Chaotic states for g < 1

We next consider the regime g < 1 in which the non-
plastic network is globally quiescent. The plastic network
has a trivial fixed point, (xðtÞ;AðtÞ) ¼ ð0N; 0N×NÞ, that is
stable when all eigenvalues of J have real part less than
unity. For N → ∞, Girko’s circular law implies that this
requires g < 1 [57]. In contrast to the nonplastic network,
the trivial neuronal-synaptic fixed point coexists with
dynamic states for large k as indicated by DMFT solutions
[Fig. 3(a), solid lines]. In Sec. V B, we confirm over a
restricted parameter regime that these solutions are chaotic
(i.e., have positive maximum Lyapunov exponent).

Dynamic states for g < 1 eventually collapse to the
trivial fixed point or, if k is large enough, to a stable
nonzero fixed point (Secs. V B and VI). In this section, we
consider values of g < 1 and k leading to chaotic states that
are prone to collapsing to the trivial fixed point. Realizing
these states in simulations is nontrivial because random
initial conditions typically miss the dynamic attractor and
decay to zero. A work-around is to deform a chaotic state
with g > 1, for which the trivial fixed point is unstable,
to a chaotic state for g < 1 by reducing g in the spirit of
annealing. Using this method, we verified that simulations
agree with the DMFT solutions [Fig. 3(a), dashed lines].
After realizing plasticity-induced chaotic states via this

procedure, we observe transient activity with a lifetime that
is approximately log-normally distributed [Fig. 3(b), right].
The median log-lifetime before collapsing is linear in N
over several decades, consistent with the typical lifetime
diverging exponentially and becoming infinite in the limit
N → ∞ in which the DMFT applies [Fig. 3(b), left]. This
divergence is faster for larger k.

C. First-order transition to nontrivial DMFT
solutions for g < 1

For g < 1, if k is not large enough to induce dynamic
activity, the plastic network is globally quiescent. We now
analyze the boundary between these phases. For order-one
values of p, we find τ� ≫ p for dynamic states for g < 1,
which reduces the single-site dynamics to the “slow” form:

ð1þ ∂tÞxðtÞ ¼ ηðtÞ þ kCð0ÞϕðtÞ: ð10Þ

This single-site picture is related to that of a nonplastic
network with order-one self-coupling parameter s for
which the single-site dynamics read

ð1þ ∂tÞxðtÞ ¼ ηðtÞ þ sϕðtÞ; ð11Þ

a model studied by Stern et al. [53]. This network has a
continuous transition from quiescence to dynamic activity
at gþ s ¼ 1. We map solutions of the Stern network
onto solutions of the plastic network by enforcing
yðsÞ ¼ s=Cð0Þ ¼ k. For a given g < 1, Cð0Þ becomes
nonzero at s ¼ 1 − g, grows with s, and saturates at unity;
thus, yðsÞ descends from infinity at s ¼ 1 − g and grows as
s for large s, tracing a U shape [Fig. 3(c)]. Each k draws a
horizontal line intersecting yðsÞ at self-consistent solutions
of Eq. (10). The critical k, defining the boundary between
phase-diagram regions (iv) and (v), is the minimum of yðsÞ
[Fig. 3(c), lower dashed line]. As Cð0Þ is finite here, this is
a discontinuous, first-order transition. Physically, this is
because sustaining dynamic activity for g < 1 requires
finite self-coupling. Since the self-coupling depends on
Cð0Þ, time-dependent solutions with arbitrarily small Cð0Þ
are not possible. As g → 0, the dynamic timescale diverges,
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FIG. 3. Chaotic states for g < 1. (a) CðτÞ from the DMFT
(lines) and in simulations for g ¼ 0.9, p ¼ 2.5, and various
values of k. (b) Left: median log-lifetime of transient activity,
before collapsing to the trivial fixed point, as a function of N for
g ¼ 0.9 and values of k from (a). Right: histograms of the log-
lifetime of transient chaos, corresponding to stars in the left-
hand plot. Simulations were terminated at time Tsim ¼ 107.
(c) Curves yðsÞ for solutions of the model of Stern et al. [53] for
various values of g. Dashed horizontal lines correspond to
different values of k, intersecting yðsÞ at self-consistent sol-
utions of Eq. (10).
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leaving only fixed points. We show in Sec. VI that fixed
points exist for k > 2.02 at g ¼ 0.
Because of theU shape ofyðsÞ for g < 1, yðsÞ ¼ k has two

solutions for k larger than its critical value: one with large s
and Cð0Þ, the other with small s and Cð0Þ [Fig. 3(c), upper
dashed line]. As g→1−, the small-s solution vanishes
(Sec. IVD) while the large-s solution remains finite.
For g > 1, yðsÞ ¼ k has a unique solution whose deforma-
tion to g < 1 gives the large-s solution [Fig. 3(c),
g ¼ 1.1 curve].

D. Second-order transition at g= 1

Finally, we solve the DMFT for g → 1þ, k < 1. This
limit marks a continuous transition from dynamic activity
to global quiescence in which Cð0Þ vanishes and τ�
diverges. Because of the vanishing variance, the self-
coupling in Eq. (10) can be linearized:

(1 − kCð0Þ þ ∂t)xðtÞ ¼ ηðtÞ: ð12Þ

This is equivalent to the single-site dynamics of the non-
plastic network with geff ¼ g=½1 − kCð0Þ� and time constant
τeff ¼ 1=½1 − kCð0Þ�. In the nonplastic network, to leading
order in ϵ ¼ g − 1 ≪ 1, CðτÞ ¼ ϵ sechðϵτ= ffiffiffi

3
p Þ [41].

Enforcing Cð0Þ ¼ geff − 1 gives, for the plastic network,

CðτÞ ¼ γ sech

�
γτffiffiffi
3

p
�
; γ ¼ ϵ

1 − k
; ð13Þ

to leading order in ϵ. In contrast to the behavior away from
this transition, activity becomes faster with increasing k.
Cð0Þ diverges as k → 1−, indicating that solutions with
g ¼ 1 for k > 1 have finite variance. Validity of the solution
Eq. (13) requires k < 1, lest we obtain a nonphysical
negative variance. On the other hand, as g → 1− for
k > 1, a positive variance is obtained; this is the small-s
solution for g < 1 described in Sec. IVC.

V. HIGH-DIMENSIONAL ANALYSIS

The DMFT describes the temporal structure of
network activity through an effective single-site picture.
Importantly, the network dynamics result from a complex
interaction of high-dimensional neuronal-synaptic modes.
We now probe the high-dimensional origin of the dynam-
ics, first through an analytical study of the spectrum of the
Jacobian describing the local, linear dynamics, and then
through a numerical study of the Lyapunov spectrum
describing the global, nonlinear dynamics. Both the
Jacobian and Lyapunov spectra show a topological tran-
sition at large k to a form with a slow, synapse-dominated
band and a fast, neuron-dominated band, with the former
driving network activity. This suggests a flipped view of the
network dynamics as being driven by the synaptic cou-
plings, with neurons serving as the connections.

A. Jacobian spectrum

Let us represent Eqs. (1)–(3) defining the model in the
form

∂txðtÞ ¼ F(xðtÞ; aðtÞ); ð14aÞ

ð1þ p∂tÞaðtÞ ¼ kG(xðtÞ); ð14bÞ

where aðtÞ ¼ vecAðtÞ contains all S ¼ N2 elements of AðtÞ.
We use the notation ½∂x=∂y�ij ¼ ∂xi=∂yj for vectors x, y.
The Jacobian is a (N þ S)-dimensional block matrix:

M ¼
 

∂ẋ
∂x

∂ẋ
∂a

∂ȧ
∂x

∂ȧ
∂a

!
¼
 

∂F
∂x

∂F
∂a

k
p
∂G
∂x − 1

p IS

!
: ð15Þ

At any instant, the neurons provide N-dimensional input
to the S synaptic variables, inducing a low-dimensional
structure of the Jacobian. Rather than considerM directly,
it is convenient to study the linear dynamics that it
generates:

∂tδxðtÞ ¼
∂F
∂x

δxðtÞ þ ∂F
∂a

δaðtÞ; ð16aÞ

ð1þ p∂tÞδaðtÞ ¼ k
∂G
∂x

δxðtÞ: ð16bÞ

The input that δa receives from δx is confined to an
N-dimensional subspace spanned by the columns of
∂G=∂x. Perturbations to δa in the (S − N)-dimensional
orthogonal complement subspace relax with timescale p.
Because of these relaxational modes, M has eigenvalue
−1=p with multiplicity S − N. The remaining 2N eigen-
values result from the interaction of δx and the component
of δa in the N-dimensional subspace that receives input
from δx. Projecting δa into this subspace via δã ¼
ð∂G=∂xÞþδa, where ð·Þþ denotes the pseudoinverse, the
2N-dimensional dynamics of interest are

∂tδxðtÞ ¼
∂F
∂x

δxðtÞ þ ∂F
∂a

∂G
∂x

δãðtÞ; ð17aÞ

ð1þ p∂tÞδãðtÞ ¼ kδxðtÞ: ð17bÞ

The associated 2N-dimensional dynamics matrix is

M̃ ¼
 

∂F
∂x

∂F
∂a

∂G
∂x

k
p IN − 1

p IN

!
: ð18Þ

In summary, the eigenvalues of M are −1=p with
multiplicity S − N together with the 2N eigenvalues of
M̃. We refer to M̃ as the reduced Jacobian [58].
Each eigenvector of M̃ can be written in terms of its x

and a components, v ¼ ðvx; vaÞ. From the lower block row
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of M̃, we obtain the relation kvx ¼ ð1þ pλÞva. Letting
faðλÞ ¼ kvak2=kvk2 denote the relative weight on the
synaptic component, this relation implies

faðλÞ ¼
k2

k2 þ p2jλþ 1=pj2 ; ð19Þ

which falls off radially with distance from −1=p. Modes
become synapse dominated as λ → −1=p, giving way to a
delta function of S − N purely synaptic modes at this point.
The Jacobian analysis thus far holds for any Fð·; ·Þ, Gð·Þ,

and S > N. In particular, the simplification to the
structure of the Jacobian does not depend on the specific
plasticity rule posited in Eq. (3). We now substitute
the forms of Fð·; ·Þ and Gð·Þ from Eqs. (1)–(3), yielding
M̃ ¼ M̃bulk þ M̃low−rank, where

M̃bulk ¼
 
−IN þ Jdiag½ϕ0� Cð0Þdiag½ϕ0�

k
p IN − 1

p IN

!
; ð20aÞ

M̃low−rank ¼
 
Adiag½ϕ0� 1

Nϕϕ
Tdiag½ϕ0�

0 0

!
: ð20bÞ

Here, ðx;AÞ is a point in phase space, ϕ ¼ ϕðxÞ,
ϕ0 ¼ ϕ0ðxÞ, and Cð0Þ ¼ kϕk2=N. M̃bulk generates the bulk
of the spectrum of M̃ while M̃low-rank can, in principle,
contribute an intensive number of outlier eigenvalues.
However, both in chaotic states and at fixed points, we
find that the reduced Jacobian does not have outliers [60].
We therefore focus on the spectrum of M̃bulk.
We compute the boundary curve encompassing the

compact spectrum of M̃bulk for N → ∞ using a theorem
of Ahmadian et al. [61] concerning random matrices
expressible as a linear reparametrization of an elementwise
independent and identically distributed random matrix
(Appendix E). This shows that the limiting spectral density
of M̃bulk has support at λ∈C if����� gð1þ pλÞ

ð1þ pλÞð1þ λÞ 1
ϕ0ðxÞ − kCð0Þ

����2
	

x

≥ 1; ð21Þ

where h·ix is an average over the components of x.
We use this result to probe the high-dimensional origin

of the dynamics in the plastic network, noting that the
spectral density of the Jacobian computed at any point on a
dynamic trajectory is time independent and self-averaging
as N → ∞. We use the DMFT to obtain a Monte Carlo
estimate of h·ix. The predicted boundary tightly hugs the
Jacobian spectra evaluated from simulations in dynamic
states (Fig. 4). These simulation spectra do not contain
outliers, justifying our focus on M̃bulk. We place a dot at
−1=p to indicate the delta function of N2 − N synaptic
relaxational modes present in the spectrum of M. Modes

past the stability line, ReðλÞ ¼ 0, locally destabilize the
network and drive the dynamics.
Setting k ¼ 0 recovers the circularly symmetric spec-

trum of the nonplastic network, enclosed by j1þ λj ≤
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕ0ðxÞ2ix

p
, as predicted by Eq. (21) (Fig. 4, k ¼ 0 row).

As k is increased, the delta function at −1=p repels
eigenvalues leftward, creating a hole (Fig. 4, g ¼ 3, k ¼ 1
spectrum). Further increasing k produces a topological
transition to a spectrum with two bands and no holes
(Fig. 4, all other spectra with k > 0). Unstable modes are
increasingly focused along the real axis, leading to slow
activity as seen via the DMFT. The slow, destabilizing band
is dominantly synaptic, and the fast, relaxational band is
dominantly neuronal. The slowest relaxing of the fast
modes have real part close to −1, the neuronal decay
timescale. This two-band topology therefore reflects a
dynamic state in which slow network activity is synapse
driven rather than neuron driven.
As k is decreased from zero into the anti-Hebbian

regime, the delta function repels eigenvalues rightward,

FIG. 4. Spectra of the Jacobian for p ¼ 2.5 and various values
of g (running horizontally) and k (running vertically). Lines:
predicted boundary curves from random matrix theory and
DMFT. Dots: spectra measured in simulations of chaotic plastic
networks. Modes are colored by faðλÞ, the weight on the synaptic
part of the corresponding eigenvector of the reduced Jacobian
[Eq. (19)]. The red dot at λ ¼ −1=p indicates a delta function of
N2 − N synaptic modes. For anti-Hebbian (k < 0) spectra,
triangular markers indicate an oscillatory frequency computed
from the zero crossings of CðτÞ.
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creating a hole to its right (Fig. 4, k ¼ −1 row). Further
decreasing k produces a topological transition to a form
with a single band and no holes (Fig. 4, k ¼ −2 row). In
contrast to the Hebbian spectra, there are pronounced lobes
of dominantly imaginary unstable modes, generating fast,
oscillatory activity also seen via the DMFT. The oscillatory
frequency computed from zero crossings of CðτÞ, as in
Fig. 2(c), corresponds roughly to the locations of the
imaginary lobes of the spectra, particularly for smaller
values of g (Fig. 4, triangular markers for k < 0 spectra).

B. Lyapunov spectrum

While analytically accessible, the Jacobian spectrum
describes only the locally linear dynamics. Rigorously
characterizing the nonlinear dynamics requires a calculation
of the spectrum of Lyapunov exponents, which are defined
as follows. Suppose a ball of radius ϵ is tossed into the flow.
As the dynamics unfold, the ball expands and contracts into
an ellipsoid. The Lyapunov exponents are the exponential
growth or decay rates of the principal axes of this ellipsoid as
t → ∞ (simultaneously, ϵ → 0 is taken so that the ellipsoid
stays small). A positive Lyapunov exponent implies expo-
nential sensitivity to initial conditions, indicating chaos. The
Lyapunov spectrum cannot be derived from the Jacobian
spectrum due to both the non-normality of the Jacobian and
the time dependence of its eigenvectors.
We first study the maximum Lyapunov exponent λmax,

which dominates trajectory divergence as t → ∞. We
measured λmax in simulations by injecting a small pertur-
bation to the system and measuring the slope (versus t) of
the log of the norm of the difference between the perturbed
and unperturbed trajectories. For g < 0, we realized
dynamic network states using the deformation method
described in Sec. IV B. For each setting of ðg; kÞ, we
simulated 200 random networks. The output of this
analysis is displayed as a heat map in ðg; kÞ parameter
space in Fig. 5(a). Parameter values that resulted in
convergence to nonzero fixed points (Sec. VI) within the
simulation time for at least 80% of networks are hatched,
values that resulted in quiescence of all networks are white.
In regions of parameter space that do not converge to

fixed points over the simulation time, λmax is positive,
indicating chaos. This includes part of the region g < 1,
confirming that plasticity can induce chaos in an otherwise
quiescent network. This analysis provides a simulation-
based confirmation of the boundary marking the first-order
transition to nontrivial DMFT solutions for g < 1 derived
in Sec. IV D [Fig. 5(a), gray lines].
As k is increased and/or g is decreased, we observe a

smaller and smaller Lyapunov exponent that eventually
results in simulations reliably collapsing to nonzero fixed
points [Fig. 5(a), solid-to-hatched boundary]. This cross-
over occurs in a parameter regime for which phase space is
densely filled with stable fixed points (Sec. VI). Using the
present finite-N analysis, we are unable to determine

whether λmax in the hatched region in Fig. 5(a) is small
and positive, or negative. Additionally, solving the DMFT
in the hatched region is numerically difficult due to the
diverging dynamic timescale (Sec. IVA). As N is increased
over a decade, the boundary marking this crossover shifts
slightly upward (Fig. 9).
We next study the full Lyapunov spectrum for chaotic

states. In general, Lyapunov spectra can be computed
numerically by propagating a set of vectors in the tangent
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FIG. 5. (a) Maximum Lyapunov exponent λmax, computed by a
perturbation method, throughout ðg; kÞ parameter space with
p ¼ 2.5, N ¼ 4000. White: quiescence. Hatched: convergence to
nonzero fixed points. (b) Histograms of Lyapunov spectra,
computed using tangent-vector propagation with N ¼ 900, for
p ¼ 2.5 and various values of g (running horizontally) and k
(running vertically). Black outline for k ¼ 0 histograms: spectra
of nonplastic network. The red triangle marks −1=p, where there
areOðN2Þ exponents in the full spectrum. (c) λmax as a function of
k for various values of g. Solid lines: estimate from tangent-vector
propagation. Dashed lines: estimate from perturbation method.
(d) Attractor dimension divided by N as a function of k for
various values of g.
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space of the flow and periodically orthonormalizing
them to prevent their explosion (vanishing) and to extract
their growth (decay) rates, as explained in detail in prior
works [49,62,63]. The plastic network has N þ N2 varia-
bles, so propagating a complete basis is prohibitively
computationally expensive for large N. Fortunately,
OðN2Þ exponents concentrate at −1=p, so it suffices to
compute the OðNÞ largest and smallest exponents. We
compute the largest exponents using the aforementioned
procedure with an undercomplete set of OðNÞ tangent-
space vectors. We find the smallest exponents by doing the
same for the time-reversed dynamics, noting that the
smallest exponents are the largest of the time-reversed
system. A complication is that the time-reversed dynamics
are unstable. We therefore run time-reversed tangent-space
dynamics, tamed by orthonormalization, atop a time-
reversed trajectory produced by the forward-time dynam-
ics. We verified that this method accurately computes the
largest and smallest Lyapunov exponents of the nonplastic
network [41,63].
Histograms of the Lyapunov spectra are shown in

Fig. 5(b). For k ¼ 0, the spectrum is the same as that of
a nonplastic network with a spike at −1=p [64]. We verified
that the measurement of λmax obtained using this method
matches the perturbation measurement displayed in the heat
map [Fig. 5(c)].
For large k, the Lyapunov spectra recapitulate the

topological transition to two bands of the Jacobian spectra,
further demonstrating a synapse-driven dynamic state
[Fig. 5(b)]. In analogy with the Jacobian spectra, the slow,
destabilizing Lyapunov band spans −1=p to λmax, and the
fast, relaxational band has an upper limit near −1.
Our calculation of the Lyapunov spectrum allows for

further calculation of diffeomorphic-invariant properties of
the strange attractor [63]. We focus on its dimension, shown
in Fig. 5(d), defined by the Kaplan-Yorke conjecture as the
number of exponents that must be summed, ranked in
descending order, to achieve a cumulative sum of zero
[65]. We display an intensive version of this quantity that has
been divided by N [42,63]. Both λmax and the attractor
dimension vary nonmonotonically in k [Figs. 5(c) and 5(d)].
This contrasts with the dynamic timescale τ�, which
increases monotonically [Fig. 2(b)]. The eventual decrease
of the attractor dimension is reminiscent of the behavior of
the participation ratio-based dimension of activity in net-
works with partially symmetric connectivity, which was
recently computed analytically [42]. The decline of λmax and
the attractor dimension at large k likely reflects the pro-
liferation of stable fixed points throughout phase space, the
subject of the next section.

VI. FIXED POINTS

For large k, the dynamics of the plastic network are
shaped by a proliferation of stable fixed points, and
finite-size networks settle to these fixed points after

transient chaos [Fig. 1(b), hatched region and (vi)]. We
first probe this settling process by analyzing how AðtÞ
collapses to a rank-1 state, measuring the approximate rank
of AðtÞ as the participation ratio of its spectrum fλiðtÞg:

PRAðtÞ ¼
½PiλiðtÞ�2P

iλ
2
i ðtÞ

¼ ½trAðtÞ�2
kAðtÞk2F

: ð22Þ

Note that if AðtÞ encodes P decorrelated neuronal states
with equal magnitude [i.e., λ1ðtÞ;…; λPðtÞ ¼ const and
λPþ1ðtÞ;…;λNðtÞ¼0], then PRAðtÞ ¼P. Evaluating Eq. (22)
in the limit N → ∞ gives

PRAðtÞ ¼
p
T
; T ¼

Z
∞

0

dτe−τ=p
�
CðτÞ
Cð0Þ

�
2

: ð23Þ

Thus, PRAðtÞ is intensive and, asN → ∞, time independent.
If τ� ≪ p, then T ≈ τ�, so PRAðtÞ is the ratio of these
timescales. On the other hand, if τ� ≫ p, then T is slightly
less than p, so PRAðtÞ is slightly larger than unity.
Hebbian plasticity tends to slow chaos. As k is increased,

PRAðtÞ therefore drops closer to unity, with temporal
fluctuations about the mean-field value in finite-size net-
works [Fig. 6(b)]. During chaos, neurons continuously
escape the synaptic drag. However, in finite-size networks
with sufficiently large k, synapses can “win”; namely,
the network fluctuates into fixed point of the form
(xðtÞ;AðtÞ) ¼ (x; ϕðxÞϕðxÞT) with PRAðtÞ ¼ 1 [Fig. 6(b)].
These fixed points are stable with respect to the combined
neuronal-synaptic dynamics.
We now compute the number of stable fixed points in

phase space. As k → ∞, there is a stable fixed point
associated with each of the 2N binary neuronal states.
Thus, any initial condition is pulled to a fixed point with
high overlap with the initial neuronal state, consistent
with the diverging dynamic timescale τ� in this regime
(Sec. IVA). For finite k, we expect exponentially many
stable fixed points. This is in contrast to the nonplastic
network [41], for which there exist exponentially many
fixed points for g > 1, but they are all unstable [66,67].
Because of the exponential scaling, we will study the log-
number of stable fixed points per neuron, an intensive, self-
averaging quantity. Fluctuations around fixed points are
governed by the Jacobian spectrum analyzed in Sec. V.
Our derivation follows that of Stern et al. [53], differing in
its initial steps that enforce stability using this neuronal-
synaptic spectrum.
At a fixed point, the DMFT equations reduce to

x ¼ ηþ kCð0ÞϕðxÞ; ð24Þ

where η∼N (0;g2Cð0Þ) and Cð0Þ¼hϕ2ðxÞiη. Equation (24)
can be written gðxÞ ¼ x − kCð0ÞϕðxÞ ¼ η. The Gaussian
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distribution over η induces a non-Gaussian distribution over
x due to the nonlinearity of gðxÞ. If jηj < ηm for some ηm,
there are three solutions to gðxÞ ¼ η. The two outer solutions
are at points of positive slope of gðxÞ; the central solution has
negative slope. The negative-slope solution renders a fixed
point unstable for the following reason. The denominator of
the averaged quantity in the Jacobian boundary [Eq. (21)] is

1

ϕ0ðxÞ ½g
0ðxÞ þ λþ pλð1þ λÞ�: ð25Þ

Because λþ pλð1þ λÞvaries fromzero to infinity as λ varies
from zero to infinity, if g0ðxÞ < 0, the denominator vanishes
for some λ > 0, precluding stability. Two solutions remain
for jηj < ηm. Stern et al. [53] observed that typical fixed
points maximize the combinatorial number of solutions

subject to stability and, moreover, are marginally stable,
meaning that the spectral boundary sits at λ ¼ 0. Setting
λ ¼ 0 in Eq. (21), marginal stability requires

��
g

cosh2x − kCð0Þ
�

2
	

x
¼ 1: ð26Þ

Since p appears in neither Eq. (24) nor Eq. (26), it drops out
of the calculation, indicating that the number of stable fixed
points is independent of this timescale [note, however, that
the shape of the Jacobian spectrum is p dependent; see
Fig. 6(e)]. Following Sec. IV, we map solutions of the
nonplastic network of Ref. [53] onto solutions of the plastic
network by enforcing s ¼ kCð0Þ.
The structure the solutions is as follows. For each g, there

is an onset of fixed points at a critical k [Fig. 6(c)]. The log-
number grows monotonically with k and saturates at
log2 2N=N ¼ 1. The onset of fixed points is discontinuous
for g < 0.76, in which case there are two solutions of the
fixed-point mean-field theory for a given ðg; kÞ: one with
large s and Cð0Þ, the other with small s and Cð0Þ. The
former are exponentially dominant. In Fig. 6(d), we display
the log-number of fixed points per neuron as a heat map in
ðg; kÞ parameter space.
We now study the spectra of fluctuations around fixed

points. We used the analytical form of the distribution over
x from the mean-field analysis to evaluate h·ix in Eq. (21),
yielding a prediction for the Jacobian spectrum at fixed
points. We also allowed many simulations of chaotic
networks to settle to fixed points, then measured their
Jacobian spectra. We find that the simulation fixed points
are indeed marginal, with spectra described accurately by
the theoretical prediction [Fig. 6(e)].
For g ¼ 0, fixed points satisfy xi ¼ kN−1kϕðxÞk2ϕðxiÞ

and thus xi ¼ �χ, where χ ¼ kϕ3ðχÞ. For fixed points to
exist, k must be large enough for this constraint to have a
nontrivial solution in χ. The smallest such k satisfies
1 ¼ 3kϕ2ðχÞϕ0ðχÞ (upon differentiating both sides in χ).
Combining these constraints gives ϕðχÞ=ϕ0ðχÞ ¼ 3χ with
solution χ ¼ �1.42, and thus k ¼ 2.02. The stability of
fixed points with this critical value of k is checked by direct
evaluation of the eigenvalues of the reduced Jacobian,
which are λ ¼ −½1þ p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ pÞ2 − 8p=3

p
�=2p < 0

with multiplicity N − 1 for each sign, comprising the bulk;
λ ¼ −1=p − 2=3 < 0 with multiplicity one; and λ ¼ 0
with multiplicity one, indicating marginal stability.
Further increasing k gives proper stability. Here, the
marginal eigenvalue is an outlier, while the bulk has finite
negative real part. This suggests that the mean-field fixed-
point calculation, which assumed marginal stability of the
bulk, breaks down for small g. Simulations and theory
agree down to g ¼ 0.5, k ¼ 1.9, so such a breakdown
would have to occur for smaller values of these parameters.

FIG. 6. Stable fixed points. (a) DMFT participation ratio
[Eq. (23)] of AðtÞ as a function of k for g ¼ 3 and various
values of p. (b) Top: empirical participation ratio [Eq. (22)] of
AðtÞ with g ¼ 2, k ¼ 2.25, and p ¼ 2.5. The network settles to a
stable fixed point. Dashed line: DMFT value. Bottom: neuronal
traces during the same settling event. (c) Log-number of stable
fixed points per neuron as a function of k for various values of g.
(d) Log-number of stable fixed points per neuron throughout
ðg; kÞ parameter space. (e) Jacobian spectra at fixed points. Lines:
predicted boundary curve from mean-field analysis. Dots: spectra
after settling to a fixed point in many simulations. Top: g ¼ 2,
k ¼ 2.25, p ¼ 2.5 [as in (b)]. Bottom: g ¼ 0.5, k ¼ 1.9, p ¼ 2.5.
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VII. FREEZABLE CHAOS

The previous section characterized stable fixed points
of the dynamics, as is typical dynamical-systems studies.
Another question is whether a subsystem can have a stable
fixed point that is unstable in the context of full system. We
now study freezable chaos, a state where a stable fixed
point of neuronal dynamics is continuously destabilized
through synaptic dynamics, generating chaos.
As described in Sec. III, for chaotic states with Hebbian

plasticity, we define nonfreezable, semifreezable, and
freezable chaos depending on the neuronal dynamics that
ensue after halting synaptic dynamics. In (semi)freezable
chaos, neurons retain a stable memory of the halt-time state
as we illustrate in Fig. 7(a).
Picking the halt time to be t ¼ 0, the couplings remain at

Wð0Þ ¼ J þ Að0Þ. Networks with such “random-plus-low-
rank” couplings have been studied in the context of
nonplastic networks by Mastrogiuseppe and Ostojic [44],
who found chaotic, structured-chaotic, and structured-
homogeneous phases that are qualitatively similar to non-
freezable, semifreezable, and freezable chaos in plastic

networks. Crucially, our analysis in plastic networks is
complicated by Að0Þ arising due to synaptic plasticity
dependent upon neuronal activity driven by J. More
specifically, the neuronal states comprising Að0Þ are largely
confined to a subspace spanned by dominant eigenvectors
of J [42], inducing alignment between J and Að0Þ. We
demonstrate the importance of this alignment by running a
simulation in which we halt AðtÞ, storing the halt-time
neuronal state as a stable fixed point [Fig. 7(b)]. We then
shuffle J while keeping the halted AðtÞ fixed. This
preserves the statistics of J, but destroys correlations
between J and the halted AðtÞ. If these correlations were
negligible, the neuronal fixed point would reorganize to a
different fixed point. Instead, shuffling destroys the fixed
point, causing the network to switch to neuronal chaos.
Upon releasing AðtÞ, the network returns to neuronal-
synaptic chaos, and AðtÞ adapts to the permuted version
of J. At a later time, we halt synaptic dynamics again. As
AðtÞ has adapted to the shuffled J, a stable neuronal fixed
point is created.
We handle this alignment through a replica mean-field

analysis involving two networks, A and B, with neuronal
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FIG. 7. Freezable chaos. (a) Neuronal traces in nonfreezable (top, k ¼ 0.6), semifreezable (middle, k ¼ 1.2), and freezable (bottom,
k ¼ 1.55) chaos for g ¼ 2.25 and p ¼ 2.5. At the first vertical line, AðtÞ is halted. In (semi)freezable chaos, a memory of the halt-time
neuronal state persists. Stability is demonstrated by perturbing the neurons (second line) and clamping them near zero (third line). In
(semi)freezable chaos, neurons relax back to the stored pattern after these manipulations. At the fourth line, AðtÞ is released. This
process is repeated at the fifth line. (b) Demonstration of the alignment between J and AðtÞ. At the first vertical line, AðtÞ is halted. At the
second line, J, but not the halted AðtÞ, is shuffled, destroying the neuronal fixed point. At the third line, AðtÞ is released. This process is
repeated at the fourth line. g ¼ 2.5, k ¼ 2.55, and p ¼ 2.5 [as in the freezable-chaos plot in (a)]. (c) Time-dependent overlap QðtÞ from
the two-replica DMFT (solid lines) and in simulations (dashed lines) for g ¼ 2, p ¼ 2.5, and various values of k. (d) Halt-time overlap
Qð0Þ from the two-replica DMFT (lines) and in simulations (triangular markers) as a function of k for p ¼ 2.5 and various values of g.
Markers are colored according to whether simulations show semifreezable or freezable activity. (e) Same as (d), but using the zero-time
correlation coefficient ρð0Þ. In (c)–(e), we show only the positive solutions for QðtÞ and ρðtÞ, which are realized upon halting synapses;
there is also a symmetric negative solution.
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states ϕAðtÞ ¼ ϕ(xAðtÞ) and ϕBðtÞ ¼ ϕ(xBðtÞ). Network
A has neuronal-synaptic dynamics for all t with quenched
random couplings J. Network B has neuronal dynamics for
all t with halt-time couplings Wð0Þ constructed from the
same J and neuronal states ϕAðtÞ as network A:

Wijð0Þ ¼ Jij þ
k
p

Z
∞

0

dte−t=pϕA
i ð−tÞϕA

j ð−tÞ: ð27Þ

We define order parameters to characterize the phases of
interest, starting with the overlap:

QðtÞ ¼ lim
t0→∞

hϕA
i ðtÞϕB

i ðt0ÞiJ: ð28Þ

Evaluated at t ¼ 0, this parameter indicates how accurately
the halt-time neuronal state is retained as a memory. We
also define the autocovariance function of network B,

DðτÞ ¼ lim
t→∞

hϕB
i ðtÞϕB

i ðtþ τÞiJ; ð29Þ

where we assume statistical stationary in time. The auto-
covariance function of network A is CðτÞ, derived pre-
viously. Finally, assessing stability of the neuronal fixed
point, when one exists, requires the stability matrix
−IN þWð0Þdiag½ϕ0ðxBÞ�, where xB is a fixed point in
network B. Stability requires that the spectrum has negative

real part. Instability is dominated by the circularly sym-
metric bulk, so it suffices to compute its radius r,

r2 ¼ g2hϕ0ðxBi Þ2iJ: ð30Þ

which follows from random matrix theory [61].
Having established these order parameters, we can

define the phases of interest quantitatively. Chaos is non-
freezable when QðtÞ ¼ 0 is the only solution. Chaos is
semifreezable when there is a nontrivial solution for QðtÞ
associated with a solution for DðτÞ that decays in τ (to a
nonzero value). In this case, there may or may not be a
fixed-point solution in which there is a distinct nontrivial
solution forQðtÞ associated withDðτÞ ¼ const. If there is a
fixed point, it is unstable, r > 1. Finally, chaos is freezable
when only a fixed-point solution for QðtÞ and DðτÞ exists.
In this case, it is stable, r < 1. Because the fixed point of
the halted-synapse system is stable, the lifetime of the
memory is infinite. Because of the x → −x symmetry of the
network, if QðtÞ is a solution, so is −QðtÞ. Upon halting
synapses, the positive solution is realized, barring “flips”
that occur in finite-size networks near the onset of semi-
freezable chaos.
We derive a two-replica DMFT that permits calculation

of these order parameters. The high-dimensional equations
describing the two replicas are

ð1þ ∂tÞxAi ðtÞ ¼
X
j

JijϕA
j ðtÞ þ

k
p

Z
t

−∞
dt0e−ðt−t0Þ=p

�
1

N

X
j

ϕA
j ðtÞϕA

j ðt0Þ
�
ϕA
i ðt0Þ; ð31aÞ

ð1þ ∂tÞxBi ðtÞ ¼
X
j

JijϕB
j ðtÞ þ

k
p

Z
∞

0

dt0e−t0=p
�
1

N

X
j

ϕA
j ð−t0ÞϕB

j ðtÞ
�
ϕA
i ð−t0Þ: ð31bÞ

Sending N → ∞ and taking the limit where the time
coordinate of network B is much greater than zero, we
obtain the single-site picture,

ð1þ ∂tÞxAðtÞ ¼ ηAðtÞ þ k
p

Z
t

−∞
dt0e−ðt−t0Þ=pCðt − t0ÞϕAðt0Þ;

ð32aÞ

ð1þ∂tÞxBðtÞ¼ ηBðtÞþ k
p

Z
∞

0

dte−t=pQð−tÞϕAð−tÞ; ð32bÞ

where ηAðtÞ and ηBðtÞ are Gaussian fields with zero mean
and second-order statistics:

��
ηAðtÞ
ηBðtÞ

�

ηAðt0Þ ηBðt0Þ

�	
ηA;ηB

¼ g2
 
Cðt − t0Þ QðtÞ
Qðt0Þ Dðt − t0Þ

!
: ð33Þ

The off-diagonal covariances effectively encode the align-
ment between J and Að0Þ. These off diagonals do not
depend on the time coordinates of network B in accordance
with the limits taken in Eqs. (28) and (29). The system is
closed by the self-consistency conditions:

QðtÞ ¼ hϕAðtÞϕBðt0ÞiηA;ηB ; ð34aÞ

DðτÞ ¼ hϕBðtÞϕBðtþ τÞiηA;ηB : ð34bÞ

We solve the DMFT numerically; imposing ∂txBðtÞ ¼ 0
and DðτÞ ¼ const gives the fixed-point solution
(Appendix C 2). We find excellent agreement between
theory and simulations [Figs. 7(c)–7(e)].
We now examine the solutions of the two-replica DMFT.

In the freezable-chaos regime, QðtÞ peaks at t > 0, indicat-
ing that the fixed point is more aligned with neuronal states
that would have unfolded after the halt time than with the
halt-time state itself [Fig. 7(c)]. This reflects a tendency of
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neurons to continue with “momentum” before becoming
trapped in a fixed point [Fig. 7(a)].
Increasing k from zero yields a sequence of continuous

phase transitions that we analyze by plotting Qð0Þ and r
against k [Fig. 7(d)]. For small k, Qð0Þ ¼ 0, indicating
nonfreezable chaos. As k is increased, Qð0Þ develops a
nonzero solution associated with a decayingDðτÞ, marking
the onset of semifreezable chaos. As k is increased further,
Qð0Þ develops an additional nonzero solution associated
with DðτÞ ¼ const, marking the onset of an unstable fixed
point. Instability is signaled by r > 0, with r computed
under the fixed-point solution. Continuing to increase k
causes r to decrease and drop below unity, marking the
onset of freezable chaos, at which point the dynamic and
fixed-point solutions converge. The convergence of the
dynamic and fixed-point solutions at r ¼ 1 is expected on
physical grounds and can also be derived through the
DMFT: when r is computed under the dynamic solution,
the decay timescale of DðτÞ diverges as ∼1=

ffiffiffiffiffiffiffiffiffiffi
r − 1

p
as

r → 1þ, giving DðτÞ ¼ const at r ¼ 1 (Appendix D). The
quality of memory retention can be measured by the
correlation coefficient,

ρðtÞ ¼ QðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð0ÞCð0Þp ; ð35Þ

which varies between zero and unity [Fig. 7(e)].
The two-replica DMFT can be solved analytically as

g → 1þ. In this limit, CðtÞ; DðtÞ; QðtÞ ∼ g − 1 and the
decay timescales of CðtÞ and QðtÞ diverge. We consider
fixed-point solutions, DðτÞ ¼ D. At leading order in
ϵ ¼ g − 1, the single-site equations reduce to

ð1þ ∂tÞxAðtÞ ¼ ηAðtÞ þ kCð0ÞxAðtÞ; ð36aÞ

xB ¼ ηB þ kQð0ÞxAð0Þ: ð36bÞ

To determine Qð0Þ, we square Eq. (36b) and average
over ηAðtÞ and ηB. This gives, to order ϵ2, D2 − ϵD−
kQ2ð0Þ ¼ 0, with the solution

Qð0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðD − ϵÞ

k

r
; ð37Þ

implying D ≥ ϵ, with strict equality when Qð0Þ ¼ 0. Next,
we multiply Eqs. (36a) and (36b) and average over ηAðtÞ
and ηB. This gives, to order ϵ2, ðD − ϵþ ∂tÞQðtÞ ¼
kQð0ÞCðtÞ, with the solution

QðtÞ ¼ kQð0Þ
Z

t

−∞
dt0e−ðD−ϵÞðt−t0ÞCðt0Þ: ð38Þ

This causal filtering makes QðtÞ peaked at t > 0. Setting
t ¼ 0 and doing the integral using Eq. (13) gives a

condition for determining D, namely, hðD=ϵ; kÞ ¼ k,
where

hðu; kÞ ¼ 2ffiffiffi
3

p
�
ψ

� ffiffiffi
3

p ð1 − kÞðu − 1Þ þ 3

4

�

− ψ

� ffiffiffi
3

p ð1 − kÞðu − 1Þ þ 1

4

��
−1
; ð39Þ

and ψð·Þ is the digamma function. Because hðu; kÞ
is monotonically increasing in u and, in our case, u ¼
D=ϵ ≥ 1, a nontrivial solution exists only for k > hð1; kÞ ¼
2=

ffiffiffi
3

p
π ≈ 0.37 [hð1; kÞ does not depend on k]. Stability is

checked by computing the fixed-point spectral radius to
first order in ϵ, r ¼ 1 −Dþ ϵ ≤ 1, implying that the fixed-
point and dynamic solutions emerge together at k ¼ 0.37 as
g → 1þ [Fig. 1(b)].

VIII. DISCUSSION

We characterized the dynamics of N neurons coupled to
N2 dynamic synapses. Strong Hebbian plasticity causes the
timescales of the system, measured through the Jacobian
or Lyapunov spectra, to segregate into a slow, synapse-
dominated band and and a fast, neuron-dominated band.
The synapse-dominated band drives the dynamics. It is
possible that this two-band structure could be detected
through in vivo recordings of neuronal activity. Takens’s
embedding theorem implies that it is possible, in principle,
to extract the spectrum of neuronal-synaptic timescales
from neuronal activity alone [68]. This segregation of
timescales could also be examined during task execution.
If the dynamics are synapse driven, neurons may revert to
their trial-average trajectories upon optogenetic or electro-
physiological perturbation. Prior studies have attributed
such robustness to neuronal mechanisms such as excita-
tory-inhibitory balance [69], but our study invites reeval-
uation of such data with an emphasis on synaptic dynamics.
Indeed, Hebbian plasticity can enhance the robustness of an
attractor manifold against distractors [70].
Increasing the strength of Hebbian plasticity initially

enriches network dynamics, indicated by an increased
maximum Lyapunov exponent and attractor dimension.
Beyond a certain plasticity strength, these metrics decrease,
likely due to the increased presence of stable fixed points
throughout phase space. This implies that there may be an
optimal level of plasticity for task performance—one that
is robust enough to enrich the dynamics compared to a
nonplastic network but not so overpowering that it simplifies
the dynamics through the overabundance of fixed points.
This could be investigated by training plastic networks to
solve tasks, e.g., using the FORCE learning algorithm [40]
or backpropagation.
Our analyses point to a region of parameter space with

large k and/or small g where it is possible that the behaviors
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of the fixed-point density and maximum Lyapunov expo-
nent are more interesting than what we have explored.
In particular, as ðg; kÞ → ð0; 2.02Þ, fixed points are margin-
ally stable by virtue of outliers, not the bulk (Sec. VI).
Additionally, our Lyapunov analysis leaves open the
possibility that the maximum exponent is negative for
sufficiently large k even as N → ∞ (Sec. V B and
Appendix F; see Fig. 9). Given that phase space is densely
filled with stable fixed points in this parameter regime, it is
possible that these features signal a novel glassy phase
of the model. Such phases in dynamic networks remain
poorly understood and are an important direction for future
research [71,72].
Our study addresses chaotic networks that either gen-

erate activity autonomously or produce complex responses
to inputs [73]. A potentially desirable alternative property is
stability, defined by the ability of a network to generate
input-driven trajectories that are robust against perturba-
tions; however, such networks cannot generate rich activity
autonomously. Kozachkov et al. [74] analyzed a plastic
network with the same governing equations as our model,
but without quenched disorder, establishing conditions for
stable dynamics [75]. A key finding was that anti-Hebbian
plasticity can promote stable dynamics, pointing to a
possible function for ongoing plasticity in input-driven
computations.
We considered plastic synapses with strengths weaker

than random synapses by a factor of 1=
ffiffiffiffi
N

p
. In experiments

measuring synaptic strength changes, such plasticity may
easily be overlooked despite its order-one network-level
impact. Our model assumes all-to-all connectivity; if
neurons receive K < N inputs, the structure-to-randomness
scaling is 1=

ffiffiffiffi
K

p
, making detection of plasticity more

feasible if K is not too large.
Humans and animals can remember a stimulus over a

delay period, implying a form of rapid information storage
in neural circuits, i.e., working memory (WM). Freezable
chaos provides a new WM mechanism that we now
compare to prior models. Most WM models rely on either
cell-intrinsic or network-level mechanisms that support
self-sustained activity. These “persistent activity” models
are supported by some experimental studies, but under-
mined by others showing “activity-silent” WM [76]. These
latter studies suggest that information can be rapidly stored
in synapses, requiring fast synaptic plasticity. Synaptic
WM models typically use short-term facilitation (STF) due
to the convention that fast plasticity is presynaptic [77,78].
Because such plasticity cannot create attractor states of
neuronal dynamics, STF models require existing symmetric
structure in the synapses, potentially formed through prior
Hebbian plasticity. A prototypical example is the model of
Mongillo et al. [9] in which clusters of excitatory neurons
with broad inhibition prime a network to function in a
metastable regime. Because of STF, an activity pattern can
be selectively sustained by providing transient external

input to one of the clusters. A key requirement of this class
of proposals is that the possible neuronal states to be stored
are known in advance.
The inability of STF models to store novel patterns

suggests the existence of fast Hebbian plasticity. This is at
odds with conventional wisdom, but supported experimen-
tally [16–24]. For examples of Hebbian WM models, see
Refs. [70,79–86]. Because of its Hebbian nature and ability
to store novel patterns, freezable chaos aligns more with
these proposals than with STF models. A crucial feature
distinguishing freezable chaos from both STF and Hebbian
WM models is that plasticity is deactivated, rather than
activated, to store a pattern. Whereas other models require
an external input carrying the pattern to be stored, this
feature allows our model to store the neuronal state while it
is engaged in strongly recurrent dynamics (in our random-
network model, chaos).
Hinton and collaborators considered the possibility of a

network performing a computation, saving its state in
synapses, using neurons to perform a subroutine, and
resuming computation from the saved state. This was
termed “true recursion” [29,33,87]. Freezable chaos pro-
vides a minimal example of this: the neuronal state can be
saved by halting plasticity, allowing neurons to engage in
arbitrary dynamics before returning to the saved state. In
our model, halting plasticity leaves a globally stable fixed
point, so neuronal dynamics during the subroutine must be
driven by external inputs. An interesting question is
whether halting plasticity can leave the network with a
fixed point that coexists with a dynamic regime that can be
used for recurrent computation. This could be implemented
in an ad hoc manner by turning on feedback loops upon
halting plasticity.
This feature of freezable chaos suggests a method of

detecting it in vivo, namely, by “interrupting” a task
requiring strong recurrent dynamics, such as evidence
integration, for variable periods of time [88]. Finding that
neurons involved in the computation show continuity in their
activities at the beginning and end of the interruption period
would be suggestive of freezable dynamics. This conclusion
would be further supported if task performance degrades
when synaptic plasticity is disabled by genetic or pharma-
cological manipulations [22]. The activity expressed by the
neurons during the interruption period would depend on
whether and how they are recruited in this interval.
In other Hebbian WM models, an external neuronal or

neuromodulatory signal is typically required to erase
information stored in the synapses and return the network
to a dynamic state. Freezable chaos avoids this requirement
by leveraging fixed points that are stable with respect to
neuronal, but not neuronal-synaptic dynamics. The pres-
ence or absence of a resetting signal could enable exper-
imental disambiguation of our proposal.
Our model offers a mechanism for WM, but lacks a

mechanism for long-term memory. This could be addressed
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by introducing slow Hebbian dynamics into J. For exam-
ple, prior DMFT studies have taken J to be a static result of
associative plasticity, resulting in various combinations of
chaos and long-term memory retrieval [44,89–91]. Models
like these could be extended by incorporating fast Hebbian
synaptic dynamics atop this static structure. It would be
particularly interesting if the short- and long-term dynamics
could be made to interact, e.g., to implement memory
consolidation. For example, during frozen chaos, if long-
term plasticity was activated while the shorter-term plas-
ticity of AðtÞ was disabled, the frozen state could be
consolidated into J.
Humans have a WM capacity of ∼7 items, but freezable

chaos can store just one item because synaptic plasticity is
halted once a pattern is stored. One way of overcoming this
limitation would be to use multiple AðtÞ matrices that can
be independently modulated, corresponding to either differ-
ent biophysical plasticity mechanisms or disjoint sets of
synapses. Organisms might benefit from these different sets
of synaptic variables possessing a hierarchy of timescales.
Large language models display a remarkable capacity for

in-context learning: producing output that incorporates
information or algorithms contained in the input [92].
This is surprising because, in both neuroscience and machine
learning, such learning is generally thought to require weight
updates. One possibility is that these models have such
capabilities because they emulate weight dynamics through
attention layers [35]. Nevertheless, explicit weight dynamics
could benefit machine-learning models, for example, by
enabling in-context learning with fewer model parameters
[33] or on longer sequences [36]. An impediment to work in
this direction is that weight dynamics are computationally
costly. An important direction of work therefore pertains to
ameliorating this burden, e.g., by formulating new forms of
weight dynamics that are both expressive and have low
computational complexity, or by exploring low-power neu-
romorphic architectures with dynamic weights.
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APPENDIX A: EXTENSIONS AND LIMITS

Here, we derive how the single-site picture of Eq. (6)
changes under various modifications of the synaptic dynam-
ics of Eq. (3). We begin with two modifications that change
the single-site dynamics simply by modifying the plasticity
kernel:

KðτÞ ¼ k
p
e−τ=pCðτÞ: ðA1Þ

(1) First, we take the limit k; p → ∞ in Eq. (3)
while keeping k=p ¼ k̃ constant. This is equivalent
to eliminating the decay term in the synaptic
dynamics:

∂tAijðtÞ ¼ k̃ϕiðtÞϕjðtÞ: ðA2Þ

In this case, the kernel Eq. (A1) becomes

KðτÞ ¼ k̃CðτÞ: ðA3Þ

Thus, the decay timescale of the kernel is determined
entirely though self-consistency.

(2) We next analyze the case where each synapse has a
different time constant p that follows a heavy-tailed
distribution with a power-law decay. We assume an
inverse-gamma distribution, fðp; α; βÞ ¼ Nðα; βÞ×
expð−β=pÞp−ðαþ1Þ, where Nðα; βÞ ¼ βα=ΓðαÞ is a
normalization constant with Γð·Þ the gamma func-
tion. This distribution decays as ∼1=pαþ1 for large p
and is exponentially suppressed as p → 0 according
to ∼ expð−β=pÞ. In this case, the kernel of Eq. (A1)
becomes

KðτÞ ¼ kα
β

�
β

β þ τ

�
αþ1

CðτÞ: ðA4Þ

Thus, the kernel inherits the power-law decay of the
distribution of time constants.

(3) We next consider a form of plasticity with a
presynaptic dependence:

ð1þ p∂tÞAijðtÞ ¼
k
N
ϕjðtÞ: ðA5Þ

For this plasticity rule, the single-site dynamics are

ð1þ ∂tÞxðtÞ ¼ ηðtÞ þ I; ðA6Þ

where I is a time-independent input given self-
consistently by

I ¼ k
p

Z
∞

0

dτe−τ=pCðτÞ: ðA7Þ

(4) Next, by introducing a time delay d, we consider a
form of temporally asymmetric Hebbian plasticity:

ð1þ p∂tÞAijðtÞ

¼ k
N
½ϕiðtÞϕjðt − dÞ − ϕiðt − dÞϕjðtÞ�: ðA8Þ
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This single-site problem for this plasticity rule is

ð1þ ∂tÞxðtÞ

¼ ηðtÞ þ k
p

Z
t

−∞
dt0e−ðt−t0Þ=p½Cðt − t0 þ dÞϕðt0Þ

− Cðt − t0Þϕðt0 − dÞ�: ðA9Þ

(5) Finally, we consider the case in which plasticity
depends on arbitrary functions of pre- and post-
synaptic activity, fpreð·Þ and fpostð·Þ,

ð1þp∂tÞAijðtÞ¼
k
N
fpost(ϕiðtÞ)fpre(ϕjðtÞ): ðA10Þ

In this case, the single-site dynamics are

ð1þ ∂tÞxðtÞ

¼ ηðtÞ þ k
p

Z
t

−∞
e−ðt−t0Þ=pCpre;ϕðt− t0Þfpost(ϕðt0Þ);

ðA11aÞ

where Cpre;ϕðτÞ ¼ hfpre(ϕðtÞ)ϕðtþ τÞiη: ðA11bÞ

APPENDIX B: BISTABLE ATTRACTORS
FOR FINITE N

For large p and k, the plastic network has two approxi-
mate dynamic solutions: a fast solution in which plasticity
is averaged out, with dynamic timescale τ� ¼ Oð1Þ, and a
slow solution in which synapses drag neurons, with
τ� ≫ p. In finite-size networks, both behaviors can be

realized depending on initial conditions. Moreover, for
appropriately tuned values of the parameters, the system
can switch between these behaviors in a bistable man-
ner (Fig. 8).

APPENDIX C: DYNAMICAL MEAN-FIELD
THEORY NUMERICS

We solve the DMFT equations in this paper using
iterative Monte Carlo methods [49–54].

1. Solution for CðτÞ
We first describe solving for CðτÞ. At each iteration, we

sample a field ηðtÞ from a Gaussian process with zero mean
and autocovariance CðτÞ. This is achieved by independ-
ently drawing Fourier coefficients from Gaussian distribu-
tions with the appropriate variances, while ensuring
Hermitian symmetry. The sampled field ηðtÞ is then
processed using the single-site dynamics given by
Eq. (6) to produce xðtÞ and consequently ϕðtÞ. An updated
estimate of CðτÞ is obtained from the empirical autocovar-
iance of ϕðtÞ. This procedure is repeated until CðτÞ
converges. Multiple fields ηðtÞ are drawn and processed
in parallel at each iteration.

2. Solution for QðtÞ and DðτÞ
The replica DFMT for freezable chaos follows a similar

procedure, but is more complicated due to the requirement
to sample correlated fields ηAðtÞ and ηBðtÞ. Given that CðτÞ
is known, our task is to determine QðtÞ and DðτÞ. First, we
sample ηAðtÞ with the correct marginal statistics, namely,
zero mean and autocovariance CðτÞ. Given ηAðtÞ, the
conditional distribution for ηBðtÞ is Gaussian with mean
μB½ηA� and autocovariance ΣBðτÞ, given by

μB½ηA� ¼
Z

dt
Z

dt0C−1ðt − t0ÞQðtÞηAðt0Þ; ðC1aÞ

ΣBðτÞ ¼ g2½DðτÞ − δ�; ðC1bÞ

where δ ¼
Z

dt
Z

dt0C−1ðt − t0ÞQðtÞQðt0Þ: ðC1cÞ

These integrals are straightforwardly evaluated in Fourier
space. To find the dynamic solution where DðτÞ decays
as a function of τ, we sample ηBðtÞ from this conditional
distribution and process it through the single-site dynamics
given by Eq. (32b) to obtain xBðtÞ and thus ϕBðtÞ. We then
update the estimates of QðtÞ and DðτÞ based on the
empirical statistics of ϕAðtÞ and ϕBðtÞ. For fixed-point
solutions with DðτÞ ¼ D, low-variance estimates of QðtÞ
and D can be efficiently obtained via numerical evaluation
of Gaussian integrals using the conditional mean and
variance. In both the fixed-point and dynamic cases, an
effective increase in the number of samples is achieved by
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FIG. 8. Bistable chaotic attractors in a simulation with g ¼ 2,
k ¼ 1.1, p ¼ 45, and N ¼ 800. Top: example neuronal traces
xiðtÞ. Bottom: participation ratio of AðtÞ (as discussed in Sec. VI).
“Fast” and “slow” states are defined by thresholding a low-pass
filtered version of kẋk.
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shifting ηAðtÞ, which multiplies the conditional mean by a
phase factor and leaves the conditional variance unchanged.
Finally, similar to the solution for CðτÞ, multiple fields ηAðtÞ
are sampled during each iteration of the solver.

APPENDIX D: RELATING r AND THE
DECAY OF DðτÞ

Given ηAðtÞ, the conditional distribution of ηBðtÞ is
Gaussian with mean Eq. (C1a) and autocovariance
Eq. (C1b). Denote the integral term in Eq. (32b) by IB½ηA�.
Then, Eq. (32b) can be expressed as xBðtÞ ¼ zðtÞ þ μB½ηA�þ
IB½ηA�, where zðtÞ is a zero-mean Gaussian field with
autocovariance Σ̃BðτÞ ¼ g2½D̃ðτÞ − δ�. Here, f̃ðτÞ is related
to fðτÞ via

ð1 − ∂
2
τÞf̃ðτÞ ¼ fðτÞ: ðD1Þ

The self-consistent condition for DðτÞ becomes

DðτÞ ¼
�Z

Du

�Z
Dxϕ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ̃Bð0Þ − Σ̃BðτÞ

q
x

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ̃BðτÞ

q
uþ μB½ηA� þ IB½ηA�

��
2
	

ηA
: ðD2Þ

The right-hand side depends on τ only through Σ̃BðτÞ, which
in turn depends on τ only via D̃ðτÞ. Differentiating both sides
of Eq. (D2) twice in τ and applying Price’s theorem yields

∂
2
τDðτÞ ¼ g4Dϕ00 ðτÞ½∂τD̃ðτÞ�2 þ g2Dϕ0 ðτÞ∂2τD̃ðτÞ; ðD3Þ

where DϕðnÞ ðτÞ is given by Eq. (D2) with ϕð·Þ → ϕðnÞð·Þ.
Setting τ ¼ 0 and using Eq. (D1) gives

∂
2
τDðτÞjτ¼0 ¼ r2½D̃ð0Þ −Dð0Þ�; ðD4Þ

noting that ∂τD̃ðτÞjτ¼0 ¼ 0 and r2 ¼ g2Dϕ0 ð0Þ. Taylor
expanding DðτÞ about τ ¼ 0, this can be expressed as

½ðr2 − 1Þ∂2τ þ r2ð∂4τ þ ∂
6
τ þ � � �Þ�DðτÞjτ¼0 ¼ 0: ðD5Þ

Assuming that DðτÞ decays on a timescale T ≫ 1, dimen-
sional analysis implies that ∂nτDðτÞjτ¼0 ¼ cn=Tn, where cn
are order-one coefficients. Keeping terms up to 1=T4 in
Eq. (D5) results in

T ¼
ffiffiffiffiffiffiffiffiffi
−
c4
c2

r
rffiffiffiffiffiffiffiffiffiffiffiffi

r2 − 1
p ; ðD6Þ

where c2 < 0 and c4 > 0 for a generic decaying autocovar-
iance function with smoothness at τ ¼ 0. Thus, as r → 1þ,
T diverges as T ∼ 1=

ffiffiffiffiffiffiffiffiffiffi
r − 1

p
.

APPENDIX E: RANDOM-MATRIX THEORY

We study the spectrum of the Jacobian by applying a
result of Ahmadian et al. [61] concerning a D-dimensional
random matrix of the form μþ LNR, where μ, L, and R
are deterministic square matrices with L and R invertible.N
is a random square matrix with entries drawn from
N ð0; 1=DÞ. It was shown that the limiting spectral density
of this matrix has support at a point λ∈C when
limD→∞D−1kRðμ − λINÞ−1Lk2F ≥ 1. We can write M̃bulk ¼
μþ LNR by setting D ¼ 2N and choosing

μ ¼
 
−IN Cð0Þdiag½ϕ0ðxÞ�
k
p IN − 1

p IN

!
;

L ¼
�
IN 0N
0N 0N

�
; R ¼

ffiffiffi
2

p �
diag½ϕ0ðxÞ� 0N

0N 0N

�
:

In this parametrization, three of the four N × N blocks of
the random matrix N have zero contribution to the result,
reflecting the fact that the randomness of M̃bulk, a 2N × 2N
matrix, is generated through J, an N × N matrix.
Additionally, while L and R are singular, a violation of
the assumptions of the theorem, one can add ϵIN to each of
L and R and safely compute the resulting spectral boundary
curve, then take ϵ → 0 at the end. We proceed to compute
the normalized Frobenius norm, yielding Eq. (21).

APPENDIX F: LYAPUNOV NUMERICS

For the maximum Lyapunov exponent heat maps in
Figs. 5(a) and 9, the dynamics were run for time
Tsim ¼ 850 with a random perturbation of magnitude
10−2 applied at time 250.
Figure 9 shows how the heat map in Fig. 5(a) changes for

different values ofN. We find empirically that the boundary
between regions of parameter space producing small,
positive λmax (dark blue) and convergence to stable nonzero
fixed points (in at least 80% of simulations; hatched) is well
fit by an N-dependent isocontour of the log-number of
fixed points [Fig. 6(d)].
To compute the Lyapunov spectra in Fig. 5(b), we use the

forward- and backward-pass method described in Sec. V B.
In both the forward and backward directions, we computed
1600 exponents for networks of size N ¼ 900. Dynamics
were run for time Tsim ¼ 800 with a burn-in period of
duration 100. We used orthonormalization intervals of
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FIG. 9. Same as Fig. 5(a) with different network sizes N.
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20 and 5 for the forward and backward directions,
respectively. For each setting of the parameters, we
computed the spectra for five different network realizations
and combined the results.
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