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Studies of the dynamics of nonlinear recurrent neural networks often assume independent and identically
distributed couplings, but large-scale connectomics data indicate that biological neural circuits exhibit
markedly different connectivity properties. These include rapidly decaying singular-value spectra and
structured singular-vector overlaps. Here, we develop a theory to analyze how these forms of structure
shape high-dimensional collective activity in nonlinear recurrent neural networks. We first introduce the
random-mode model, a random-matrix ensemble related to the singular-value decomposition that enables
control over the spectrum and right-left mode overlaps. Then, using a novel path-integral calculation, we
derive analytical expressions that reveal how connectivity structure affects features of collective dynamics:
the dimension of activity, which quantifies the number of high-variance collective-activity fluctuations, and
the temporal correlations that characterize the timescales of these fluctuations. We show that connectivity
structure can be invisible in single-neuron activities, while dramatically shaping collective activity.
Furthermore, despite the nonlinear, high-dimensional nature of these networks, the dimension of activity
depends on just two connectivity parameters—the variance of the couplings and the effective rank of the
coupling matrix, which quantifies the number of dominant rank-one connectivity components. We contrast
the effects of single-neuron heterogeneity and low-dimensional connectivity, making predictions about
how z-scoring data affects the dimension of activity. Finally, we demonstrate the presence of structured
overlaps between left and right modes in the Drosophila connectome, incorporate them into the theory, and

show how they further shape collective dynamics.
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I. INTRODUCTION

The collective activity of a high-dimensional nonlinear
system is determined by the structure of the interactions
between its elements, but the mapping from structure to
activity is generally analytically tractable only for limited
forms of structure. In systems neuroscience, structure in
synaptic connectivity controls the function of a neural
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system by determining what patterns of activity are
produced by populations of neurons. This paper studies
this mapping in the context of nonlinear recurrent neural
networks, used widely in neuroscience as models of neural-
circuit dynamics [1-3] and in machine learning as systems
for sequence processing [4—7]. While these models omit
many aspects of actual neural circuits, they capture several
of their fundamental features, including their large scale,
nonlinear units, and recurrent interactions. Functionally, a
key property of such systems is that, like real neural
circuits, they can generate rich time-varying activity in
the absence of external input [8,9].

Theoretical studies of nonlinear recurrent neural net-
works, including the pioneering work of Sompolinsky et al.
(Ref. [10]), often focus on the case of independent and
identically distributed (i.i.d.) couplings or simple variants
thereof [11]. Such disordered networks produce high-
dimensional chaotic activity, reminiscent of asynchronous
cortical activity observed in vivo [10]. Initializing recurrent
neural networks so that they exhibit chaotic dynamics has
also been shown to facilitate subsequent learning [12-16].

Published by the American Physical Society
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Experimental access to large-scale connectivity structure
creates an opportunity and imperative to develop theories
that explain models beyond those with i.i.d. couplings.
Recently, large-scale synaptic reconstructions of neural
circuits, or ‘“connectomes,” have become available in
multiple species, including the full brain of Drosophila
melanogaster [17] and increasingly large portions of
mammalian circuits [18-21]. These large-scale connec-
tomes reveal that neural circuits deviate substantially from
the i.i.d. assumption, as previously demonstrated via the
presence of small-scale motifs [22]. In particular, in
accordance with real-world networks more generally [23],
neural circuits appear to exhibit low-rank structure in which
the connectivity is well described by fewer rank-one
components than the network size (we demonstrate this
explicitly for the Drosophila connectome in Sec. Il A). In
neural-network models, recurrent or otherwise, such struc-
ture emerges naturally in several contexts, including when
connections depend on distance in physical or feature
spaces [24-26] or when networks are trained on tasks with
low-dimensional structure [27-29].

In parallel with the development of large-scale connec-
tivity maps, recent advances in recording technologies,
including silicon probes [30] and large-scale calcium
imaging [31,32], now enable the activities of many neurons
to be monitored simultaneously, with the latest datasets
including hundreds of thousands of neurons or more [33].
This technological progress has enabled researchers to
characterize collective properties of neural activity rather
than focusing solely on single-neuron responses. These
collective properties capture how neurons interact and
reveal distributed computational processes that are visible
only with high-yield recording technologies [34]. Such
population-level features are typically analyzed using
dimensionality reduction techniques like principal compo-
nents analysis [35-38].

A. Relating connectivity and collective-activity
structure analytically

We currently lack analytical tools to predict relationships
between connectivity structure, described by connectomics
or other datasets, and collective activity, described by large-
scale neural recordings. Dynamical mean-field theory
(DMFT) is a theoretical tool from statistical physics widely
used to analytically characterize activity in large nonlinear
recurrent neural networks. Although recent advances in
DMFT have extended these techniques to describe collec-
tive features in networks producing high-dimensional
chaotic activity [39], these calculations have been limited
to i.i.d. connectivity, or connectivity with simple correla-
tions between reciprocal couplings. Extending such calcu-
lations to more complicated connectivity structures rapidly
becomes unwieldy. Consequently, such analyses have not
been performed for networks whose connections are con-
strained by the statistics of connectomic or other datasets,

limiting our ability to leverage these datasets for theoretical
insight.

One tractable approach has been to study networks
with very low-dimensional connectivity and thus activity
(specifically, in the limit where the rank of the coupling
matrix remains finite while the network becomes large; see
Sec. I C). However, connectomes, like that of Drosophila
considered in Sec. II A, do not support this finite-rank
assumption. Furthermore, while neural activity recorded in
experiments is often low dimensional, this may be inherited
from the low dimensionality of experimental tasks; in more
complicated tasks or spontaneous states, activity is typi-
cally higher dimensional [31-33].

To address these limitations and challenges, this paper
makes two contributions.

(1) A tractable model of neural-network coupling ma-
trices that we call the random-mode model. Moti-
vated by the Drosophila connectome considered in
Sec. IT A, we introduce the random-mode model in
Sec. II B, in which the couplings are generated as a
sum of rank-one outer products of random left and
right modes with component-specific strengths.
Unlike well-studied low-rank recurrent neural-net-
work models, we scale the rank with the network
size (Sec. IIC). We show in Sec. IID that para-
metrizing these strengths provides control over the
singular-value spectrum of the coupling matrix.

(2) A new path-integral calculation of a specific four-
point function of network activity, originally defined
by Clark et al. (Ref. [39]), that captures features of
collective activity including its dimensionality. We
review these and other summary statistics in Sec. 1L
In Secs. IVA-IV C, we describe the calculation,
based on fluctuations around the saddle point in a
path integral, and apply it to the random-mode
model. In Sec. IV D, we use the solution to study
how features of the coupling matrix control collec-
tive activity.

Additionally, in Sec. V, we analyze notable limiting
cases of the random-mode model. In Sec. VI, we study a
generalization of the model featuring heterogeneity among
single-neuron properties and contrast these effects with
those of low-rank structure in connectivity. Finally, in
Sec. VII, we incorporate structured overlaps between the
left and right modes into the model, demonstrating their
presence in the Drosophila connectome and showing how
they further shape collective dynamics.

II. RANDOM-MODE MODEL

A. Spectral structure of neural-circuit connectivity

Let J denote an N x N weighted, directed coupling
matrix among N neurons. Many theoretical studies have
examined single-neuron [10] and collective [39] properties
of activity in nonlinear recurrent neural networks with i.i.d.
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Analysis of Drosophila central-brain connectome. (a) Volume of fly brain for which reconstruction was performed (blue;

reproduced from Ref. [17]). (b) Normalized coupling matrix (elements summed within 10 x 10 blocks to aid visualization). (c) Singular-
value spectra of the normalized coupling matrix (red) and an i.i.d. random matrix (gray). The fly connectome exhibits a smooth spectrum
that decays quickly, corresponding to a reduced participation ratio. N = 18028 neurons.

J;;- However, the coupling matrices of real-world networks,
including neural circuits, often exhibit approximate low-
rank structure that deviates dramatically from the i.i.d.
assumption. To illustrate this, we analyzed a central-brain
connectome of the fruit fly Drosophila melanogaster using
the singular-value decomposition (SVD), which decom-
poses any matrix as a sum of rank-one components, with
each component’s strength given by the corresponding
singular value [Figs. 1(a) and 1(b); details in Appendix B].
Specifically, the SVD decomposes J in the form

M
J=> " Su,vl, (1)
a=1

where, fora =1, ..., M, S, > 0 are the singular values; u,,
and v, are N-dimensional left and right singular vectors,
respectively; and M is the rank of J.

The ranked singular values of the Drosophila connec-
tome decay much more rapidly than those of an i.i.d. matrix
of the same size, which follow a universal distribution
independent of single-element statistics [Fig. 1(c);
similar analysis appears in Thibeault et al. (Ref. [23])].
We quantify this rapid decay using the participation
ratio (PR) of the squared singular-value spectrum,
PRS = ("M §2)2/5°M  §% The connectome’s partici-
pation ratio is 0.18, substantially lower than the value 0.5
characteristic of i.i.d. matrices, confirming that this bio-
logical network exhibits a much more concentrated low-
rank structure than would arise from i.i.d. couplings.

B. Definition of the random-mode model

Both the singular-value spectrum and, as we will show
later, the overlaps of the left and right singular vectors of
the Drosophila connectome deviate from the predictions of
an ii.d. coupling matrix. We therefore introduce the
random-mode model, a generative model for coupling

matrices that allows us to capture these properties within
a random-matrix ensemble (Fig. 2).

The random-mode model has the same mathematical
form as an SVD, but is a statistical generative process for J
rather than a matrix factorization. The model generates a
coupling matrix of the form

M
J:ZDafargv (2)
a=1

where, for each a = 1,...,M, D, > 0 are the component
strengths; r, and ¢, are N-dimensional right and left
modes, respectively; and M is the number of components,
where rank < min(N, M). We now describe the properties
of these quantities. See Appendix A for a glossary of terms.

1. Component strengths

The component strengths D, are analogous to the
singular values S, of J. We model these quantities
deterministically with the requirement that they are defined
for arbitrarily large M and that empirical averages
M='S"M  f(D,) converge to limiting values, denoted
(f(D))p, as M — co.

2. Left and right modes

The left and right modes ¢, and r,, are analogous to the
left and right singular vectors u, and v, of J. We assume
they are sampled i.i.d. across the neuron index i,

P{urataly) = ]:[P({faiv Faitas1): (3)

where P({¢,,r,}™ ) is the joint distribution over the
2M mode components, which must be specified. We
assume that this distribution has the following moments
fixed:
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FIG. 2. Schematic of the random-mode model. Upper: couplings J are generated as a sum of outer products, ,r%, with component

strengths D,,. Lower: the two-point function C z’( (7) and four-point function ‘I‘f (7) are calculated in terms of the statistics of D,,. The two-
point function depends only on the effective gain g.g, while the four-point function depends on both g.; and PRP, the effective
dimension of the connectivity determined by the D, distribution.

4)

<fal’ﬂb> = <rarb> = %5ab' (5)

This yields orthonormality of modes in expectation,

<f£t’b> = 5abv

(riry) = Sap, (6)
in analogy to singular vectors, for which orthonormality
holds exactly [40]. Individual mode components are

O(1/+/N). Note that we have not constrained second
moments that mix left and right mode components.

C. Rank scaling and comparison to low-rank recurrent
neural networks

A crucial modeling choice is how the number of modes
M scales relative to the network size N. The two main
possibilities are M = O(N) or M = O(1), corresponding
to extensive and intensive rank scaling, respectively. The
random-mode model is characterized by extensive rank
scaling, where both M and N approach infinity while
maintaining a fixed ratio,

(7)

By choosing a to be small, or by choosing the spectrum of
ranked component strengths to decay rapidly, we can
construct connectivity that is low rank or well described
by a small number of rank-one components, compared to
the number of neurons.

The alternative approach of intensive rank scaling, where
M remains finite while N — oo, leads to what has been

termed “low-rank recurrent neural networks” in the liter-
ature [42-45]. In some instances, the intensive-rank com-
ponent is added to an i.i.d. matrix modeling unstructured
“background” connectivity [42,43]. Note that, in this paper,
when we use “low rank” or “low dimensional,” we refer to
quantities that are small as a fraction of N, even if they are
extensive; this differs from some prior works (such as those
on low-rank recurrent neural networks) where these terms
refer to intensive quantities.

The distinction between extensive- and intensive-rank
scaling has important implications for specifying the dis-
tribution over the 2M mode components P({¢,, r,}* ).
For finite M, one can directly specify this distribution. At
large N, such a distribution encodes the relative geometry of
the left and right modes, since the inner products between
modes converge to (N times) the second moments of
P({Z,.r,}M ), with negligible fluctuations. A common
choice is a 2M-dimensional multivariate Gaussian distribu-
tion. An important insight from prior work on the intensive-
rank case is that these overlaps are crucial for shaping the
dynamics and computations implemented by the network, as
overlaps between connectivity modes dictate how activity
modes interact [42-45].

Our goal is to go beyond the intensive-rank setup, which
produces correspondingly low-dimensional activity, to
model more sophisticated, higher-dimensional dynamics.
However, specifying the full distribution P({¢,, r,}*._,) in
the random-mode model, where M — oo, is more compli-
cated. First, it must be well defined for all M to allow taking
the limit. More fundamentally, we would like to use the
random-mode model to construct generative models that
capture certain essential spectral features of coupling
matrices, over which we have systematic control. Using
a joint Gaussian distribution would require specifying M>
parameters which, since M = O(N), is comparable to
defining the full N x N coupling matrix.
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For this reason, this paper specializes to a case where
P({¢,, r,}™,) factorizes across the mode index a,

M

P({fa’ra}ﬁ/lzl) = HP<favra)7 (8)

a=1

where P(Z,,r,) must be specified. Moreover, until
Sec. VII, we further specialize to the case where the left
and right modes are fully independent: P(¢,,r,) =
P(¢,)P(r,), with each marginal factor P(¢,) or P(r,)
being a univariate Gaussian with mean zero and variance
1/N [46]. In this case, all 2M N components specifying the
modes are i.i.d. with mean zero and variance 1/N; we refer
to this case as “i.i.d. modes.” In Sec. VII we use a
nonfactorized form of P(¢,,r,) to specify correlations
between £, and r,, introducing M deterministic parameters
(in addition to the M component strengths) to specify the
left-right correlation for each a.

D. Relationship to singular-value decomposition

In the SVD, the left and right singular vectors are
orthonormal: u’u, = vlv, =5,,. In contrast, the left
and right modes are orthonormal only in expectation
[Eq. (6)]; once sampled, there are random O(1/ \/N)
overlaps,

1¢, = 5, + O(1/VN),
"Z"h=5ab+o(1/\/ﬁ)- 9)

When the effective rank (defined below) is small and N is
large, the component strengths and modes approximate
singular values and vectors, respectively, since the effects
of the O(1/4/N) deviations from orthonormality in the
sampled modes are negligible. Indeed, a well-known result
in high-dimensional geometry is that finite numbers of
random vectors with i.i.d. components approximate ortho-
normal bases at large N [47]. When the effective rank is not
small, overlaps between different modes produce a dis-
crepancy between the component strengths D, and singular
values S,. We now characterize this discrepancy
analytically.

We denote the nth moments and participation ratio of the
component-strength distribution by

ry = <D”>D? (10)
2

PRD =2, (11)
Iy

from which we define the “effective rank™ of the couplings,

effective rank = aPRP. (12)

The effective rank is related to the participation ratio of
the squared singular-value spectrum at large N [48] through

aPRP
PRS = ——— . 13
1 + 2aPRP (13)

Expanding in small aPR?, PRS = aPR? + O((aPRP)?),
demonstrating that the component strengths are closely
related to the singular values in the low-dimensional
regime. While we express the analytic results in this paper
in terms of aPRP, the above equation can always be used to
translate between aPR” and PRS.

We further quantify this discrepancy in the case where
D, =1 for all a. Using methods from free probability
theory [49,50] (Appendix C; Fig. 8), the M singular values
are distributed over a range with boundaries

5 2 3/2
S, = \/1+7“—%i (1+g> V8a.  (14)

For small a, S, =1+ +2a+ O(a). Thus, while the
random-mode model spreads the nonzero singular values
over a range, this spread becomes negligible for small a.
More generally, the distributions of D, and S, coincide for
small aPRP.

Having presented a generative model of connectivity, we
now present the network model that transforms this con-
nectivity into neural activity. We then define summary
statistics that characterize the structure of this activity,
allowing us to analyze its dependence on the connectivity.

III. NETWORK MODEL AND SUMMARY
STATISTICS

A. Recurrent neural-network model

We study a recurrent neural network of N neurons. Each
neuron i € {1, ..., N} is characterized by its preactivation
x;(#) and activation ¢;(t) = ¢(x;(¢)), where ¢(-) is a scalar
nonlinearity; we use ¢(x) = erf(y/7x/2), which is sig-
moid-shaped and has ¢’(0) = 1 [51]. The network dynam-
ics are governed by

N
Tlx](1) = zfijﬁlﬁj(f)’ (15a)
=1

where T[x](7) = (1 + 9,)x(t). (15b)
Here, J;; denotes the synaptic coupling from neuron j to
neuron i, and T[] is a causal functional that specifies the
single-neuron dynamics for which Eq. (15b) is a canonical
choice. We expect our results to be agnostic to the specific
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choice of T[-]. We next introduce correlation functions that
capture single-neuron and collective activity properties.

B. Two-point functions and duality of neuronal and
temporal covariances

Let a € {x, ¢} denote either preactivations or activations.
We define two complementary covariance functions, aver-
aging over either time or neurons,

Cij(7) = (ai()a;(t + 7)), (16)

C(ty, 1) :%Zai(tl)ai(h)' (17)

These functions exhibit a form of duality: for any lag 7, the
matrix C“(z) with elements C{;(z) indexed by (i, j) and the
matrix with elements C%(#, t, + 7) indexed by (7, t;) have
the same eigenvalue spectrum, up to scaling (to see this,
note that both matrices can be computed from a time-by-
neuron activity matrix A as ATA and AAT, respectively,
which have identical spectra) [52].

We also define the neuron-averaged response function,
describing the propagation of infinitesimal perturbations,

. 1 Kéai(n)
) = 3G

. (18)

where /(1) is a source term added to the right-hand side of
the network dynamics: T'[x;](r) = Y°%, Ji;¢;(1) + 1;(2).
Finally, we define “stationarized” counterparts,

Ci(z) = §4(e) =

(C(t.1£7)),, ($4(t,1=7));- (19)

C. Four-point functions, dimension of activity, and
principal-component timescales

In contrast to the above two-point functions, which
characterize single-neuron activity, four-point functions
describe features of collective activity. The same four-point
functions were used in Ref. [39]. Here, we motivate these
functions in more detail and express them in two ways via
the duality between neuronal and temporal covariances.

To motivate their definition, consider the dimension of
activity, which can be quantified as the participation ratio of
the spectrum of the equal-time covariance matrix C¢(0)
[9,36,53-59]. Given the eigenvectors v} and eigenvalues A{
fork =1, ..., N, as one would compute as part of principal
components analysis, the participation ratio is

o 1SN A)?
PRY= S S (20)

To see why PR? provides a meaningful measure of
dimension, consider the case where D eigenvalues equal a

positive constant and the remaining eigenvalues are zero.
Then, PR? = D/N. More generally, when the spectrum
exhibits a smooth decay rather than a hard cutoff, the
participation ratio identifies the characteristic decay scale
(divided by N) [55]. We compare the participation ratio to
alternative measures of effective dimensionality in
Appendix D. Without the normalization factor 1/N, this
quantity would vary between 1 and N; with normalization,
it varies between 1/N and 1.

In the limit N — oo, this quantity could have three
qualitatively different behaviors:

(1) Subextensive dimensionality: PR* = 0. The number

of dimensions filled by activity grows sublinearly
with N.

(i) Nontrivial extensive dimensionality: 0 < PR? < 1.
The number of dimensions filled by activity grows
linearly with N and not all dimensions are filled
equally.

(iii) Trivial extensive dimensionality: PR* = 1. All di-
mensions are filled equally by activity.

An advantageous property of the participation ratio is
that it can be expressed as the ratio of the squared trace and
Frobenius norm of C*(0), both of which can be further
expressed in terms of matrix elements C¢;(0),

L (tC(0)
K= leor

B Ca(o)Z
N2 CH(0)2 + 437 C(0)2

where C%(0) is given by Eq. (19). Assuming that diagonal
elements are uniform with negligible fluctuations, i.e.,

(21)

C%(0) = C%(0) for all i (as occurs, for example, under
i.i.d. connectivity [10]), this simplifies to
C(0)?
PR¢ = . © , (22)
C*(0)* +y*(0.0)

where, following Ref. [39], we define the four-point
function

Zc (23)

l#/

where 7 = (7, 7,). The three scaling behaviors of dimen-
sionality outlined above correspond in the limit N — oo to
w“(0,0) - o0, w*(0,0) — const., or y?(0,0) — 0, respec-
tively. Since yw?(0,0) is given by a sum over O(N?)
squared cross-covariances times 1/N, its magnitude is N
times that of an individual squared cross-covariance. Both
1.i.d. matrices and the extensive-rank matrices generated by
the random-mode model lead to O(1/v/N) cross-cova-
riances. Thus, w“(0,0) — const. as N — oo, leading to
nontrivial extensive dimensionality, 0 < PR% < 1.
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In this paper, we focus on a related function ¥*(7) that
includes the diagonal terms,

N
Wie) =23 CheC ). (24)
ij=1

As per the duality between neuronal and temporal cova-
riances, W (7) can also be expressed in terms of the time-
by-time covariance C%(t,,1,) as

Pi(z) = N(C(t,,)C(t) + 71,1, +72)) 0, (25)

The neuron-by-neuron [Eq. (24)] and time-by-time
[Eq. (25)] definitions of W*(z) form the basis of the cavity
and path-integral calculations of this function, respectively.
Finally, the dimension of activity is given by

B Cce (0)2
-~ P4(0,0)°

PR¢ (26)

which, unlike Eq. (22), holds even when single-neuron
variances C¢%(0) are nonuniform across neurons.

To study timescales of collective activity, we consider the
principal components of activity,

1

pi(t) = N (v)7a(t). (27)
These principal components are the basis of much of
modern analysis of high-dimensional neural data [35-38].
They all have unit variance due to the 1//4{ normaliza-
tion, but potentially very different characteristic timescales
[Fig. 9(a)]. To extract the timescales of just the leading
components, we weight them by the squares of their
corresponding eigenvalues. This gives

1
N 2P OpEe +2), = W0 0), - (28)
showing that W¢(z) captures the temporal structure
of the leading principal components of activity
[Figs. 9(c) and 9(d)]. Note that weighting by the eigen-
values themselves, rather than their squares, gives
N7V 2 (pé(t)pi(t + 1)), = C%(z), recovering single-
neuron information [Figs. 9(b) and 9(d)].

IV. PATH-INTEGRAL ANALYSIS OF THE
RANDOM-MODE MODEL

We aim to compute the summary statistics C%(t,,1,),
S4(t1,t,), and W¥(7) in the limit N — oo under the disorder
average. For a general function F, we use the subscript * to
denote such limiting values,

Fo= Jim (F),. (29)

These values also correspond to the saddle point of a path
integral. The summary statistics we have defined are self-
averaging, meaning that the same values are obtained, up to
O(1/+/N) fluctuations, when they are computed based on a
single realization of a large network. In this paper, we are
interested in statistically stationary states such that, for
N — oo, the two-point functions depend on time
differences only and thus can be replaced by their statio-
narized counterparts [Eq. (19)], i.e., for all ¢,

Ci(tr,t £7) = Cq(r), S4(t,t—7) = S%(7). (30)

Calculating two-point functions is well-established “stan-
dard DMFT” [60-62]. As we review in Appendix E,
four-point functions were previously calculated for networks
with i.i.d. couplings using a two-site version of the cavity
method [39]. In this section, we introduce a new path-integral
approach to calculating four-point functions that allows for
the rapid solution of the i.i.d. model and generalizes to more
complicated models, including the random-mode model.

A. Relating W to temporal covariance fluctuations

To cast the problem in the language of path integrals, we
turn to the time-by-time definition of ¥*(z) [Eq. (25)]. If the
time-by-time covariance C“(¢,, t,) were equal to its limiting
value, C4(t, — t,), we would have

?
Wi ()=N(Cs(t, —1))Ci(ta =t + T2 —71));,,, = O

since, for large time differences, C%(, — ;) decays expo-
nentially in |¢, — ;| [10]. However, based on the neuron-by-
neuron definition [Eq. (24)], W4 (z) is clearly a nonzero,
order-one quantity. This apparent contradiction is resolved
by considering the O(1/+/N) fluctuations around the limit-
ing value. The necessity of these fluctuations becomes clear
when considering the duality between neuronal and tem-
poral covariances: the presence of nonzero cross-covarian-
ces C{;(0) indicates low-dimensional structure in the
system; equivalently, this structure manifests as the system
revisiting similar states over time, resulting in nonzero
temporal covariance C“(t;,t,) even for large time
differences |z, — #;| > 1 (Fig. 3). To capture this behavior,
we define fluctuations around the saddle point as

5C(t), 1) = C(t1. 1) — Cy(ta — 11). (31)

We express W¢(z) purely in terms of these fluctuations as
Pi(z) = N(6C*(t,,1,)0C (1) + 71,1 +72)), 4p» (32)
noting that terms involving C% (#, — ;) vanish at large time

differences. Our task, therefore, is to compute the covariance
of the fluctuations, 6C“(#;,1,), captured asymptotically by
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C%(ty, t5) (time by time)

Cg»’(O) (neuron by neuron)

FIG. 3. Duality of neuron-by-neuron and time-by-time cova-
riances and its relation to the dimension of activity. Both plots are
based on the same simulation of a network of N = 2500 neurons
with g =2.25 and i.i.d. couplings. The dimension can be
computed either by computing the statistics of the off diagonals
of the neuron-by-neuron covariance Cf} (0) (left) or by computing
the fluctuations away from the translation-invariant mean-field
form of the time-by-time covariance C?(t,,1,) (right).

(NOC“(11.12)5C (13, 14)) 4. (33)
Then, to compute ¥4 (), we take in Eq. (33) the limits

t3:t1+’[1, |t2—t1’—>00,

t4:t2+T2, TI,T2~0(1>. (34)

B. Calculation of two- and four-point functions

Details of the calculation are given in Appendix F.
Briefly, we compute the covariance of fluctuations
[Eq. (33)] wusing the Martin-Siggia-Rose-Janssen—de
Dominicis (MSRJD) path-integral formalism [60-65].
For any fixed coupling matrix J, the path integral is

ZlJ) = / Dx / Dt
exp{i ivlj / dr (1) (T[x,-](t) - 2:: J,,¢j(¢)> }
(35)

The auxiliary field %;(¢) is conjugate to x;(¢) and enforces
the network’s equations of motion [Eq. (15a)] through the
S-function representation (27)~! [ d%e™ = §(x). Upon
introduction of source terms (that are not needed for our
purposes), this path integral serves as a generating func-
tional for correlation and response functions.

In principle, to compute W4 () in this framework, after
integrating out J from Z[J] to obtain a statistical field
theory governing two-point functions, we (1) find the
saddle-point solution for two-point functions by extremiz-
ing the action (i.e., standard DMFT); (2) compute the
time?-by-time?> Hessian matrix of the action describing
fluctuations around this saddle point; (3) invert this Hessian
and extract the sub-block corresponding to the covariance

of 5C% (1, 1,) [Eq. (33)]; and (4) apply the temporal limits
[Eq. (34)] to this sub-block to obtain W% (7).

Direct inversion of the time?-by-time> Hessian is ana-
lytically intractable. However, we show that the temporal
limits commute with Hessian inversion, allowing us to
invert a low-dimensional frequency-dependent Hessian
instead (Appendix G). This readily yields the Fourier-space

function ¥/ (@), where @ = (w;,w,). A few additional
steps yield W% (w). This approach allows for the efficient
calculation of two- and four-point functions for a given
model, requiring only a few lines of computation directly
from the action of the theory.

As a demonstration of this approach, we apply it to a
generalization of the i.i.d. model with correlated reciprocal
couplings, recovering results of Ref. [39] (Appendix H).

C. Solution of the random-mode model

Applied to the random-mode model, the self-consistent
equations that determine C?(¢,,,) are (Appendix I1)

T[x|(t) = n*(1), (36a)
7 ~GP(0,ar,C?), (36b)
CL(t1. 1) = (p(1))p(12)) 1. (36¢)

where Eq. (36b) indicates that #*(¢) is a Gaussian field with
zero mean and correlation function ar,C?%(z,7). These

equations are equivalent to those for an i.i.d. model
[Egs. (E2)—(E4)] with coupling strength

Gett = \/ar. (37)

The four-point function, our main object of interest, is
(Appendix 12)

1+ b |62 ST
qﬂiﬁ _ aPRP |gef(/f) 12| C(fz’ (38)
1 _ggffsl2|2

where we have simplified notation by suppressing fre-
quency variables via the shorthand C?, = C%(w,)C% (w,)
and S‘I/’2 = 5?(,)S? (w,). The same solution is obtained
through a more involved, but intuitive, two-site cavity
calculation (Appendix L; Fig. 11).

This solution for the random-mode model is one of our
main results, which we now spend some time interpreting.

D. Interpreting the solution

Our analysis reveals two features of connectivity that
characterize how it shapes activity, namely, the effective
coupling strength g.; and the effective rank aPRP. The
former characterizes local structure (the magnitudes of
individual couplings), while the latter characterizes global
structure (the number of large connectivity components).
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0.0 05 10
aPRP

(b)

1.

wé(T, 0)

Y PRC =1

T

FIG. 4. Dimension of activity and collective timescales in the random-mode model. (a) Activity dimension PR? versus effective rank
aPRP for various coupling strengths g Thin dots, individual simulations; thick dots, means over 10 simulations; lines, theoretical
predictions. Inset: extended g.;s = 6 case, showing convergence to i.i.d.-coupling behavior with growing a. (b) Normalized four-point

function ¥4 (z,0) = W¢(z,0)/¥#(0,0) for various g.; and @PR”. Inset: theory curves for all «PRP, demonstrating relative invariance of
collective timescales to the effective rank. Simulations use N = 5000 neurons.

The above equations determining C?, (z) and W7, (z) immedi-
ately reveal that global structure in the connectivity is
invisible at the single-neuron level but shapes collective

activity. Specifically, the correlation function Cf (7) is fully
determined by g.s and is insensitive to the effective rank of
connectivity. This has important implications for neural data
analysis. In particular, analyses of single-neuron
activity properties may miss signatures of structured con-
nectivity that become apparent only when analyzing col-
lective-activity properties among simultaneously recorded
neurons.

What is the nature of the dependence of collective-activity
properties, such as the dimension of activity, on the effective
rank? To plot this relationship and validate the theory, we
simulated networks and computed the participation ratio from
the empirical equal-time covariance matrix of the activations
(see Appendix M for numerical details). We used a compo-
nent-strength spectrum D, « exp(—fpa/M), which yields
PR? = ;! tanh(Bp). To attain a desired effective rank
aPRP < 1, we set a = M/N =1 and solved for f3; for
aPR? > 1, we fixed PR? = 1 and increased . We adjusted
gere by rescaling D, uniformly. We find excellent theory-
simulation agreement (Fig. 4). Figure 4(a) illustrates how the
dimension of activity, PR?, varies with aPR? for different
values of g.¢. Consistent with i.i.d.-coupling networks, PR?
increases monotonically with g. [39]. It also increases
monotonically with aPRP.

Taking aPR” — oo for fixed g.4 in Eq. (38) recovers the
formula for i.i.d. couplings [Eq. (ES)] of Ref. [39]. Indeed, in
this limit, J approaches an i.i.d. matrix. Correspondingly,
PR? approaches the activity dimension of a network with
ii.d. couplings [Fig. 4(a) inset]. Comparing Eq. (ES)
to the corresponding i.i.d. formula (1/aPR? = 0) and noting
that single-neuron properties are unaffected by aPR”, one

sees that any structure beyond i.i.d. connectivity (1/aPR”
finite) strictly decreases the dimension of activity.

The dimension of activity depends on ‘W% (r) at
7= (0,0); we now examine the temporal profile of this
function. Figure 4(b) shows a normalized version of
W9 (z,0), which is related to the correlation functions of
leading principal components, for various values of g.¢; and

aPRP. The decay timescale of WY (z,0) decreases with
increasing g.¢, approaching a limiting behavior at g =~ 10.
While aPRP affects the overall scale of this function and,
consequently, the dimension of activity, it has little effect on
the decay timescale and, hence, little effect on the timescales
of leading principal components [Fig. 4(b), inset]. Thus, the
effective rank primarily influences the dimension of activity
rather than the collective temporal structure.

A remarkable feature of these results is that only two
connectivity statistics, g and aPRP, are sufficient to
determine the two- and four-point functions. Because of
the nonlinear, high-dimensional nature of the network, this
reduction is unexpected. This reduction breaks down when
structured mode overlaps are introduced (Sec. VII), in
which case, the formula for the four-point function requires
knowledge of the full joint distribution of component
strengths and overlaps.

V. LIMITING BEHAVIOR OF THE RANDOM-
MODE MODEL

Here, we examine the behavior of the random-mode
model in two limiting cases: as the system approaches the
transition to chaos from above (g — 17) and in the limit
of low effective rank (aPRP — 01).

We first consider the limit g.;; — 17 for arbitrary aPR”.
The relevant expansion parameter is 0 < g+ — 1 < 1. For
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networks with i.i.d. couplings with coupling strength g, it is
known that, as g— 1%, ¥{;,,(r)~1/(g—1) and
PR% . ~(g—1)% [39]. For the random-mode model, to
leading order in 1/(ge — 1),

1

0 = (14 )P @ (39)
~1/(gesr—1)

Consequently, to leading order in g.; — 1, the dimension of
activity behaves as

1 -1
PR = (1 PR¢. . . 40
< + aPRD) ii.d. ( )

N(!Jeff—l)3

Thus, as the network approaches the transition to chaos
from above, structured connectivity reduces the dimension
by a factor of (1 + 1/aPRP)~! compared to a network with
i.i.d. couplings. Taking the further limit of @PR? — 0
yields the simple relation

PR = aPRPPRY, , . (41)

The difference between aPR” and PR® is a higher-order
correction, so we also have PR¢ = PRS PR{, , ; that s, in the
limits of both low effective rank and small effective
coupling strength, the dimension of activity is equal to
the dimension of the singular-value spectrum multiplied by
the dimension of activity for an i.i.d. network.

We next consider the limit aPRP” — 0%, for arbitrary geg.
In this limit, the component strengths closely approximate
the singular values. To leading order in aPRP?,

PR = K“(ges)aPR”, (42)
2 Qa 2 -1
a a g S
k(o) = C2(07| [ o] B0 Pt |7 oy
1 — gereSa

We verify this limiting behavior in simulations using
a =1 and a step function for the component strengths:
D, = const. for a/N <PR? and D, = 0 otherwise. We
varied PR?, observing linear relationships with PR? and
PR* in the PR? — 07 limit [Fig. 10(a)].

Focusing on K?(g.), note that its expression [Eq. (43)]
resembles the formula for the dimension of activity in an
i.i.d. network with coupling strength g.; [Eq. (ES)], but
includes an additional factor [g2;S%[? in the integral.
Numerical evaluation confirms that, as expected from
Eq. (41), K?(getr) = PR?, 4 as gep = 17. As gegy increases,
K?(ge) increases monotonically to approximately
1'53PR?.>i.d, [Fig. 10(a), inset]. Thus, for networks with

low effective rank, PR? ~ aPRDPRﬂd. up to an order-one
fudge factor that becomes exactly one as g — 17.

Finally, we consider the dependence of the full eigenvalue
spectrum A¢ of C“?(0) on the spectrum of component
strengths D,. The latter leads to the former via a highly
nonlinear relationship. Indeed, using the same step-function
component-strength spectrum, the ranked eigenvalues A?
and A4* of the covariance matrix decay smoothly rather than
exhibiting a cutoff [Fig. 10(b)]. Nevertheless, certain proper-
ties of these connectivity and activity spectra are linked. In
particular, in the limit aPR? = 0F, aPRP and PR exhibit a
linear relationship [with proportionality factor K“(ges)],
implying that the ratios of the squared second moments
and fourth moments of these spectra are linked (despite, even
in this limit, the full spectra not coinciding).

VI. SINGLE-NEURON HETEROGENEITY

Cortical neurons display broad distributions of firing
rates [66]. This heterogeneity among neurons is analogous
to the heterogeneity of component strengths in the random-
mode model, but operates in the neuron basis rather than
the component basis. We now compare how low-dimen-
sional connectivity structure and heterogeneous neuronal
properties affect collective activity by extending our frame-
work to include single-neuron heterogeneity.

In a general formulation described in Appendix J, we
extend the nonlinearity of neuron i to @ (x), which
depends on a vector of neuron-specific parameters 6;,
and solve for the resulting two- and four-point functions.
Here, to model firing-rate heterogeneity specifically, we
take @; to consist of a single gain parameter G;, with
®y (x) = G;¢p(x). In analogy with the component-strength
distribution, we define

4, = (G")g- (44)
qz

PRC =12, (45)
n

The single-site picture that determines the two-point
functions is largely similar to Eq. (36¢).

We analyze collective activity (four-point functions) for
(1) unnormalized activations ®y () = G;¢(x;(t)) and
(2) normalized activations ¢;(t) = ¢(x;(¢)), the latter
being analogous to z-scored firing rates in neural record-
ings, where z scoring removes single-neuron heterogeneity
while preserving structure from cross-neuron and temporal
correlations. The four-point functions for the unnormalized
and normalized variables are found to be

1 1 2 b |2
<I>7PRG+aPR_D ‘geffS12| o
- 2 ob |2 12
|1 _geffS12|

(46a)

1+ (ﬁ + aleu - 1)|g§ffS{1/}2|2
1 - ggffoZP

p? — c?,. (46b)
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FIG. 5.

Effect of single-neuron heterogeneity on dimension of activity in the random-mode model. (a) Dimension of normalized

activity PR? versus participation ratio of gain distribution PR for various coupling strengths g, and effective ranks «PRP. Thin dots,
individual simulations; thick dots, means over ten simulations; lines, theoretical predictions. (b) Fractional reduction in dimension for
weighted activations relative to PR?. Blue, G;¢;; purple, G?e“d‘)”‘qﬁ,-. Jert = 10. Thick dots, means over ten simulations, averaging before
taking the ratio; lines, theoretical predictions. All simulations use N = 5000 neurons.

respectively, where C}, = q%C’fZ and we have updated the
definition of the effective coupling strength to
Geff = +/0T2q5. Equation (46b) demonstrates that reduc-
tions in effective rank, described by aPR”, and reductions
in the heterogeneity of gains, described by PRC, have
symmetric effects on the dimension of normalized activity,
with their combined effect captured by the harmonic mean
[(1/aPRP) + (1/PRY)]~! [67]. One might expect that
normalizing the activations before computing the dimen-
sion of activity would remove the effect of heterogeneous
gains on the dimension. This is not the case, however, since
neuronal gains affect the recurrent dynamics, not merely
the observed firing rates.

To further explore these effects, we compare the activity
dimensions for three sets of activations: unnormalized
activations and normalized activations (1 and 2 above)
and (3) normalized activations multiplied by an indepen-
dent set of “readout” gains, @[adoU(r) = Gieadoutgy, (),
where the readout gains have the same distribution as
the actual gains. Case (3), whose four-point function is
given by Eq. (J18), considers variables with the same
distribution of firing rates as the unnormalized activations,
but where this heterogeneity is unrelated to the recurrent
dynamics.

To validate our theoretical predictions [Eqgs. (46a), (46b),
and (J18)], we simulated networks with component
strengths and gains given by D, x exp(—fpa/M) and
G, x exp(—pfgi/N) (Fig. 5). The dimension of activity is
determined by the coupling strength g.y, the effective

rank aPRP, and the participation ratio of the gain distri-
bution PRC. Increases in each of these parameters
lead to a higher activity dimension for all three sets of
activations.

Normalized activations exhibit the highest dimension.
While scaling normalized activations by heterogeneous
factors reduces dimension as expected, the magnitude of
this reduction depends on whether G; or Ggead‘)‘“ is used,
even when their distributions are identical. This occurs
because neurons with the largest gains preferentially
participate in the leading modes of the normalized
activations. Further scaling these already-dominant neu-
rons by their gains results in overrepresentation of these
neurons compared to using random gains. Thus, the
dimension of unnormalized activations is lowest, with
the dimension of random-readout activations falling
between those of the normalized and unnormalized
activations.

In experimental data analysis, it is common to normal-
ize single-neuron activities to control for differences in
firing rates across neurons. Our analysis implies that
such normalization may not eliminate the effects
of single-neuron heterogeneity on collective-activity
properties. The persistence of these effects through
normalization provides an experimental signature for
distinguishing between heterogeneity that affects recur-
rent dynamics and heterogeneity that affects only the
observed firing rates, for example, in a circuit that is not
recurrent.

041019-11



DAVID G. CLARK et al.

PHYS. REV. X 15, 041019 (2025)

C
©
S0 . fly hemibrain
1]
-4 "‘
\\;‘ :
e K
Y %0' RMM without overlaps
\“«; —
A
500 T T T T )
100 200 300 400 500 -4 -2 0 2 4
(b) U mode index
Q
% 05y *2.5/VN 1
3 00 2 %0— RMM with fly-based overlaps
o)} £
8 -05 -1
© T T T T T T 1 T T T 1
0 500 1000 1500 2000 2500 3000 -4 =2 0 2 4
mode index Re[A]

FIG. 6. Right-left mode overlaps and eigenvalue spectra of the fly-brain connectome. (a) Overlap matrix between right and left
singular vectors of the connectome. First 500 modes are shown. (b) First 3000 diagonal elements of the overlap matrix from (a).
Horizontal lines indicate an approximate cutoff for O(1/+v/N) random overlaps. (c) Eigenvalue spectra of various connectome-based
matrices. Top: actual hemibrain spectrum, exhibiting large outliers along the real axis. Middle: eigenvalues from a realization of the
random-mode model (RMM), using singular values from the connectome as component strengths D,, resulting in a circularly
symmetric spectrum. Bottom: random-mode model realization with right-left mode overlaps incorporated, where overlaps are given by
the inner products of left and right singular vectors from the fly connectome SVD. Data from Scheffer et al. [17], N = 18028 neurons.

VII. MODE OVERLAPS

Thus far, we have assumed ii.d. modes, with the
factorization P(¢,,r,) = P(¢,)P(r,) implying that left-
right overlaps €7r, are random and O(1/+/N). The same
holds for #r, with a # b due to the more fundamental
assumption that P({Z,,r,}!,) factorizes across a.
However, computations in biological circuits require struc-
tured interactions between modes, suggesting stronger,
nonrandom overlaps between left and right modes. To test
this, we return to the Drosophila connectome and compute
the overlap matrix between left and right singular vectors,
0,, = ul'v, [Fig. 6(a)]. Contrary to the small, unstructured
overlaps expected under the i.i.d. assumption, the con-
nectome exhibits large, structured overlaps, particularly
along the diagonal [Fig. 6(b)].

Motivated by the presence of these large diagonal overlaps,
we extend the random-mode model to include correlations
between corresponding left and right modes. Specifically, we
take P(¢,,r,) to be a zero-mean bivariate Gaussian with
marginal variance 1/N and covariance p,/N, where p,, is the
correlation between the ath mode pair. Both D, and p, are
treated deterministically, and we assume that M -1 Za
f(Dg,pa) converges to a limiting value (f(D,p))p, as
N — co. In this setting, #’r,=p, with negligible
o/ VN ) fluctuations around this structured overlap, while
¢Ir, for a# b remains unstructured and O(1/v/N).
This additional structure produces eigenvalue spectra

resembling that of the connectome, including large real
outliers [Fig. 6(c)] [68].

This purely diagonal overlap structure, however, can
generate only real eigenvalue outliers. The presence of
complex outliers in the connectome, together with the full
overlap matrix itself [Fig. 6(a)], implies the presence of
richer correlations. Capturing such features would require
relaxing the full factorization of P({Z,, r,}) across a while
retaining O(M) parameter scaling—for example, via
blockwise factorization or Markovian correlations across
a. We leave such generalizations for future work. We also
note that, by setting p, = 1 for all a, the model becomes a
Hopfield network storing an extensive set of Gaussian
patterns. In such networks, each mode can be “condensed”
[O(1) overlap with activity] or “uncondensed” [O(1/+/N)
overlap with activity]. Our analysis assumes no condensed
modes, but sufficiently strong positive overlaps break this
assumption. The Gaussian case, however, is unable to
generate multiple multistable attractors as in a memory
system [44]. Note that the form of the single-element
density is relevant for the condensed patterns, but not for
the uncondensed patterns. Allowing for condensed patterns
within our analysis would require specifying this density.
See Ref. [69] for a DMFT analysis of generalized Hopfield
dynamics in which these ideas are implemented.

In Appendix K, we compute the two- and four-point
functions. As in previous cases, the dynamics reduce to
single-site processes,
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Tl (1) = n(1) + / "WR(LOY).  (4Ta)
’/[X ~ gP(Ov Q*)’ (47b)

CH (1. 13) = (B(1) (1)) (47¢)
Sty 1) = <‘;f(<2))>* (47d)

Assuming temporal stationarity, the kernels are given in
Fourier space by

D2
|1 = DpS ()2

0.0) =a( >D,,,C(f(‘”)’ (43)

Dp

1 — DpSY(w) >D.p' )

Rufa) =af

Unlike the i.i.d. modes case, the single-site picture is not
equivalent to that of an i.i.d. network for some ¢..

To better understand the self-coupling kernel R, (@), we
expand in powers of p. The coefficients encode connec-
tivity motifs of increasing orders,

Ry(@) = (Jii) + (NJijJ i), SY (@) + -+,  where
Vi) s = 0‘<DP>D,p7 <NJiiji>* = a<(Dp)2>D,p' (50)

Here, (J;;), corresponds to deterministic self-couplings or
autapses. To avoid such biologically implausible O(1) self-
connections, we set (Dp)p, , = 0, yielding J;; = O(1/+/N)
[70]. The second term in the expansion (note that i # j)
reflects reciprocal correlations in an otherwise i.i.d. net-
work (Appendix H). Nonzero higher-order terms indicate

that this structure cannot be reduced to either of these
simpler cases. Notably, if both (NJ;;), and (NJ;J;;),
vanish, all higher-order terms vanish as well, making
reciprocal covariance necessary and sufficient for a nonzero
self-coupling kernel in the single-site description.

The four-point function, meanwhile, is given by

V—1+{(]+X12)(1+X;1)—|—H.C.} ;

\pf = |1 1__‘;]/]2 12>
U=a(D’%Z)p, V = a(D*Z%,1%)p
W = a(D*p*Zi%,) ), X1y = a(D*pZ %) .
St
Zk:m (k=1,2). (51)
We validate this theory wusing a=1 and

D, xexp(—fpa/N), as before. For overlaps, we use a
sigmoidal spectrum for p, qualitatively inspired by
Fig. 6(b), with multiplicative prefactor y, and other
parameters chosen such that (Dp),, , = 0 (Appendix K 3).

Across values of g.; and PR?, sufficiently strong overlaps,
of either sign, reduce the dimension of activity (Fig. 7). The
maximum dimension occurs for y, < 0, where dynamics
most strongly suppress activity aligned with dominant
connectivity modes. This effect weakens as g, increases.

In summary, our analysis reveals how connectivity
structure shapes collective activity and its dimensionality.
When mode overlaps are unstructured, connectivity struc-
ture reduces to two parameters: the effective rank aPR? and
effective coupling strength g.;. Structured left-right mode
overlaps break this simplification: Collective dynamics
then depend on the full joint distribution of component
strengths and overlaps, providing an additional mechanism
for controlling activity dimensionality.

PRP =03 PRP=0.8 PRP =1
'}
0.06
°
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=6
% Geff
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FIG. 7. Effect of right-left mode correlations on dimension of activity in the random-mode model. Dimension of activity PR? versus
correlation parameter y, in the (D, p) joint distribution, for various coupling strengths g.; and effective ranks aPRP. Thin dots,
individual simulations; thick dots, means over ten simulations; lines, theoretical predictions. All simulations use N = 5000 neurons.
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VIII. DISCUSSION

A. Motifs versus global structure

Neuronal connectivity is often described using statistics
of motifs: local patterns like chains or cycles among small
groups of neurons [22,73—75]. These can be estimated from
partial observations of a weight matrix which, until
recently, set the limits of experimental measurement.
Advances in whole-brain connectome reconstruction now
allow access to global connectivity, including spectral
features. Our parametrization of coupling matrices repre-
sents this global structure, with control over both the
spectrum and mode overlaps. These spectral features
determine how activity modes interact dynamically and
thus may more directly dictate neural computations com-
pared to motifs.

That said, in some studies the primary goal is to capture
motifs or graph-theoretic features (e.g., degree distribu-
tions) over which the random-mode model does not
provide control (although some of these features have
spectral signatures that could be incorporated). When such
features are the focus, other connectivity models are better
suited—for instance, maximum-entropy random graph
models constrained by fixed structural features (e.g., the
configuration model for matching degree distributions).

B. Linking connectivity and activity datasets

The random-mode model, together with its dynamical
theory, could aid in the interpretation of large-scale neural
activity recordings in the context of anatomical connectiv-
ity, such as in Drosophila, where both the connectome and
whole-brain activity data are available [76]. In the current
work, we used this connectome to characterize the spectral
structure of an actual large neural circuit, stopping short of
considering the activity that it generates. Future work could
progressively incorporate richer connectome constraints
into the model to identify which features most strongly
shape collective activity. One possible sequence would be
to add the spectrum of component strengths, then diagonal
mode overlaps, and finally off-diagonal overlaps, assessing
at each step how much the correspondence between
modeled and observed activity improves. This is similar
to approaches in statistical physics that aim to recover
higher-order correlations by constraining lower-order sta-
tistics [38,77,78].

C. Learning

Learning alters collective dynamics by modifying con-
nectivity, the core principle of machine learning. Our
analysis focuses on structured but untrained networks that
produce chaotic activity. Nevertheless, the extensive low-
rank connectivity structures we study provide a starting
point for understanding trained networks.

Large networks trained on simple tasks often show
intensive low-rank modifications to their initial couplings,

resulting in a finite number of task-relevant eigen-
values [27,43]. Existing theoretical tools can already
describe such systems by taking the trained weights,
performing a low-rank decomposition, modeling mode
overlaps statistically, and studying the resulting low-rank
DMFT [45]. By contrast, empirical studies of large net-
works trained on real-world tasks suggest the emergence of
extensive low-rank structure, with smooth spectral profiles
with many significant components [28]. This structure
resembles that modeled by the random-mode model.
Whether mode overlaps extracted from such networks
can be incorporated into the random-mode model frame-
work, and thereby yield a working theory for the extensive-
rank case, is an open question.

A more ambitious direction is to develop a DMFT for
networks whose weights are learned from data, rather than
first training networks and then retrofitting a statistical
model. Such a theory would describe not only how data
shape the weights, as addressed by classical works [79], but
also how data interact with recurrent network dynamics.
The path-integral formalism is well suited to this, as it
allows derivation of DMFT equations for coupling matrices
drawn from a Gibbs ensemble with an energy function
given by a task loss. While this approach has been applied
to low-dimensional tasks [80], applying it to high-dimen-
sional tasks could yield a theory of how such tasks generate
extensive-rank weights that, in turn, produce extensive-
dimensional activity whose single-neuron and collective
properties the theory would describe.

Another route to extensive-rank structure is via networks
that perform many tasks, which could be modeled, for
example, by representing mode overlaps through blockwise
factorization of P({£,, r,}M ) across a. This “multitask”
scenario is increasingly relevant in both neuroscience and
machine learning [81,82].

Even in standard recurrent neural network training, ini-
tializing couplings with low-rank structure could improve
procedures such as FORCE learning, which rely on sup-
pressing chaos [12,13]. Lower-dimensional attractors may be
easier to control, potentially leading to faster convergence.

D. Modeling functional consequences of single-neuron
heterogeneity

A central question in neuroscience is how neuronal
diversity shapes collective dynamics and computation
[83]. Appendix J presents a general framework that assigns
each neuron a parameter vector € and enables the study of
how different forms of heterogeneity affect properties such
as dimensionality. Section VI focuses on gain heterogeneity
to model firing-rate diversity, but this framework could also
incorporate more intricate cell-specific features, such as
electrophysiological characteristics [84], linking single-
neuron heterogeneity to functional consequences for pop-
ulation activity.
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E. Transient dynamics and excitation-inhibition

Our analysis has focused on stationary states with
translation-invariant temporal correlations. Many neural
computations, however, rely on transient dynamics that
break stationarity and depend on absolute time. Extending
the DMFT accordingly is numerically tractable for two-
point functions but would become unwieldy for four-point
functions, W4 (¢, 1, 13, t4). Representing and manipulating
such a large object may require approximations or low-rank
decomposition.

One notable transient phenomenon is transient amplifi-
cation, linked to non-normal coupling matrices that natu-
rally arise from excitatory-inhibitory segregation (Dale’s
law) [85,86]. Although the random-mode model does not
enforce Dale’s law, the resulting matrices are nevertheless
non-normal and may exhibit transient amplification; such
effects may be amplified through structured off-diagonal
overlaps between left and right modes. Non-normality also
decouples the highest-variance dimensions from the slow-
est modes. Relatedly, extending the random-mode model to
respect Dale’s law and incorporating a nonsaturating
¢(x)—achieving stability via excitation-inhibition balance
rather than saturation [87,88]—could enable more direct
comparisons to both connectivity and activity data.

F. Random basis property

The random-mode model assumes that the 2M mode
components associated with each neuron are sampled i.i.d.
for each neuron [Eq. (3)]. This leads to neuronal permu-
tation symmetry of the distribution over J. Furthermore,
when the marginal distributions over left and right mode
components are isotropic Gaussians, as we have assumed,
the embedding into neuronal space is, by definition,
random and Gaussian. This “random basis property”
may underlie heterogeneous tuning observed in neural
circuits [29], but in our case it imposes modeling limi-
tations: While the random-mode model has configurable
spectral properties, it precludes configuration of spatial or
anatomical properties.

This limitation could be addressed by conditioning the
distribution over the 2M mode components on neuron-local
properties such as brain region or spatial location, provided
the number of effectively distinct possibilities is intensive.
This would yield a regionally or spatially embedded
random-mode model, apt for connectome studies.

Because we assume zero-mean mode components
[Eq. (4)], (J;;) = O for i # j. Thus, the low-rank structure
is not inherited from the expected weight matrix. This
differs from the mechanism described by Thibeault et al.
[23], who analyze cases where low-rank structure arises
because (J) is low rank, with the random part treated as
noise. By Weyl’s inequality, the singular values of J differ
from those of (J) by, at most, the spectral norm of the noise.
This mechanism is fundamentally different from the
random-mode model’s zero-mean, randomly embedded

structure. Which of these mechanisms is more prevalent
in real-world networks is an open question.

G. Alternative generative models

Tiberi et al. [89] proposed a generative model for
coupling matrices that parametrizes the eigendecomposi-
tion of J rather than its SVD. Their formulation does not
capture relationships between eigenvalues and eigenvec-
tors. Our SVD-like approach allows simultaneous control
over component strengths and their corresponding mode
overlaps. Whereas Tiberi ef al. [89] studied noise-driven
linear networks within a random-matrix-theory framework,
our DMFT formulation applies to nonlinear dynamics.

Connectivity parametrizations resembling the random-
mode model have been used to study the correspondence
between spiking and rate-based recurrent neural networks
[90] and to expedite training spiking networks [91].

IX. CONCLUSION

The random-mode model and associated analytical
techniques provide tools for exploring the relationship
between connectivity and collective dynamics. Our para-
metrization of connectivity is a middle ground between
intensive-rank models and i.i.d. random networks. Building
on this framework stands to further bridge neuronal
connectivity, activity, and function.
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APPENDIX A: GLOSSARY OF TERMS

Number of neurons (N): Total number of neurons in the
network.

Number of modes (M): Number of components in the
random-mode model.

(Effective) coupling strength (g, g.): Standard deviation
of the couplings times /N in the i.i.d. connectivity
model, random-mode model [Eq. (37)], or variants
thereof [e.g., see just below Eqgs. (46a) and (46b)].

Random-mode model: Network connectivity model:
J =" D27 [Eq. ).

Connectivity component (Z,r%): Outer product of output
and right modes.

041019-15



DAVID G. CLARK et al.

PHYS. REV. X 15, 041019 (2025)

TABLE 1. Mapping of neurotransmitters to synaptic signs.
Neurotransmitter Synaptic sign
GABA —1 (Inhibitory)
Acetylcholine +1 (Excitatory)
Glutamate —1 (Inhibitory)
Serotonin Ignored
Octopamine Ignored
Dopamine Ignored
Neither Ignored

Right mode (r,): Neuronal pattern in the ath component
onto which activity patterns are projected.

Left mode (#,): Neuronal pattern in the ath component
along which the projected activity pattern is expanded.

Component strength (D,): Scaling factor for the ath
component.

Ratio of modes to neurons (a): Given by a = M/N
[Eq. (7)].

Participation ratio of component strengths (PR”): Given
by PR? =r3/r, [Eq. (11)], where r,=(D"),
[Eq. (10)].

Effective rank (aPRP): Connectivity dimensionality
measure [Eq. (12)].

Two-point function: Correlation function given by
C(ty, 1) = (1/N) 3K, ¢i(11)hi(12) [Eq. (17)].

Four-point function: Higher-order correlation function
given by ¥(z),7,) = (1/N) >V C;Z),-(Tl)cﬁ(fz)

ij=1 ,
[Eq. (24)]. See also time-by-time deflmition [Eq. (25)].

APPENDIX B: PREPROCESSING OF FLY
HEMIBRAIN CONNECTOME

We use the dataset from Scheffer ef al. [17], in which
synaptic counts are reported for each connection. These
counts determine the magnitudes of the coupling matrix
elements. Neurotransmitter probabilities for each neuron
are obtained from a machine-learning analysis of the
electron microscopy data [92]. Each neuron is assigned
its most probable neurotransmitter, which is then mapped to
a synaptic sign (excitatory or inhibitory) according to
Table I [93,94].

Synaptic counts do not directly correspond to effective
synaptic strengths, so it is reasonable to choose “fudge
factors” to relate the two. Our primary goal in choosing
these factors is to standardize the spectrum of the coupling
matrix so that it is roughly confined to the unit disk. At the
same time, we want to preserve key structural features of
the original connectivity.

Specifically, the preprocessing is designed to preserve:

(1) the sparsity pattern (for which the connections are

ZEro versus Nnonzero);

(ii) the sign of each connection (excitatory versus

inhibitory);

(iii) approximately, the relative magnitudes of same-sign

inputs to each neuron; and

(iv) approximately, the relative magnitudes of same-sign

outputs from each neuron.
The last two properties are preserved only approximately
because they are enforced simultaneously by the iterative
normalization procedure described below.

We normalize the coupling matrix using an iterative
scaling method analogous to the Sinkhorn-Knopp algo-
rithm. First, for each row, we rescale the positive elements
by a row-specific factor so that their L2 norm equals 1/+/2.
We then rescale the negative elements, using a separate

factor, so that their L2 norm also equals 1/+/2. This yields
rows with a total L2 norm of 1 and balanced excitatory and
inhibitory contributions. A small number of neurons with
only excitatory or only inhibitory inputs retain an L2 norm
of 1//2.

Next, we apply the same rescaling procedure to each
column, which disrupts the previous row normalization. We
alternate the row and column scaling steps until conver-
gence. The result can be interpreted as the projection of the
original matrix onto the set of matrices that are properly
normalized along both rows and columns, while keeping
the same nonzero elements and signs.

This iterative normalization provides a principled way to
choose the required scale factors while achieving our goal
of a standardized spectrum.

APPENDIX C: FREE PROBABILITY
CALCULATION

We wish to determine the limiting density of the singular

values of

J=LR", (C1)

where L and R are independent N x M random matrices

with a = M /N and entries of variance 1/N. Equivalently,
we can compute the eigenvalues of

J'J = RLTLR" (C2)

and then take the square root to obtain the singular values.
These eigenvalues are the same as those of

LTLR™R, (C3)
which is the product of two independent Wishart matrices,
L'LR'R = W, W. (C4)

The Stieltjes transform G(z) of a spectral density p(4) is
defined as
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G(z) = / ) djp_ (j), (€C\R,  (C5)
o) = = lim Im G2+ ie). (C6)

T e—0*

In a two-dimensional electrostatics analogy, the real and
imaginary parts of G(z) correspond to the Cartesian
components of the electric field generated by a line charge
density p(A) on the real axis. The inversion formula is then
analogous to Gauss’s law, relating the discontinuity of the
normal field component to the local charge density.

The moment-generating function and S transform are
defined by

M(z) =zG(z) — 1, (C7)
1+z
)= i (cs)

where M~!(z) is the functional inverse of M(z). For a
Marchenko-Pastur distributed Wishart matrix W with
aspect ratio a,

1
Cl+az’

S(z) (C9)

A key fact in free probability is that the S transforms of free
variables multiply. Thus, for W;W,, the § transform is

1

= e

(C10)

From the definition of the S transform, the inverse-moment-
generating function is

_1+Z_(1+z)(1—|—az)2

M) = 2S(z) z (1)
Therefore, M(z) satisfies
Z:[l—l—M(z)][l—l-aM(z)]z‘ (C12)

M(z)

Using M(z) = zG(z) — 1, we obtain a cubic equation for
G(2),

a=0.005 a=0.01 a=0.025

free
probability

P(S,)

- ?733G(2)? + 22 (& — @)G(z)?

+z(z+2a-a*>-1)G(z) —z=0. (C13)
In principle, this can be solved using the cubic formula, but
the explicit form is cumbersome. For the support bounda-
ries of p(4), we need only the points where ImG(z)
changes from zero to nonzero. This occurs when the
discriminant of the cubic vanishes. The discriminant is

A =21 [42* + (a* — 20a — 8)1

+ (—4a® + 12a* — 12a + 4)], (C14)
where we replaced z with 4 to indicate restriction to the real
axis. Setting A = 0 gives 4 = 0 or the nontrivial quadratic
equation

4% 4 (@> = 20a — 8)A + (—4a® + 120> — 12a + 4) = 0.
(C15)

The roots of this quadratic are

2 3/2
Ai:1+5§—%i<l+g> V8a.  (C16)

The singular values correspond to the square roots of the
eigenvalues, given by Eq. (14). We confirm this formula
numerically in Fig. 8.

APPENDIX D: ALTERNATIVE MEASURES OF
EFFECTIVE DIMENSIONALITY

Alternative measures of effective dimensionality, which
could be applied to both connectivity and activity in place of
the participation ratio, have been proposed in the literature.
Roy and Vetterli [95] define effective rank as the exponential
of the entropy of a categorical probability distribution
obtained by normalizing the eigenvalues to sum to 1, i.e.,
pi = 4i/ Zj-vzl A;j. Written in terms of this distribution, the
participation ratio is PR = (}_¥, p?)~!, while the expo-
nentiated entropy is exp(H) = exp (— >_Y, p;log p;). By
Jensen’s inequality, PR < exp(H). Exact equality holds in
certain cases, including when exactly K < N eigenvalues are
equal and the rest are zero, yielding PR = exp(H) = K.

a=0.05 a=0.1 a=0.2

0.0 05 1.0 1.5 2.0 0.0 05 1.0 1.5 2.0 00 05 1.0 15 20 00 05 1.0 1.5 20 00 05 10 15 20 00 05 1.0 15 2.0

Sa Sa Sa

FIG. 8.

Sa Sa Sa

Distribution of singular values in the random-mode model. Histograms show singular values of LDR” with D, = 1 for various

a. For a < 1, the singular values concentrate at 1. Vertical lines, prediction of Eq. (14). N = 5000.
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Furthermore, for smoothly decaying spectra as discussed
above [for which p; = f(i/Nw)/ >, f(j/Nw), with
w < 1], both measures have PR = ¢; Nw and exp(H) =
¢y Nw, where ¢ and ¢, are N- and w-independent constants
depending on the specific form of f. Thus, while the
measures differ in detail, they provide similar character-
izations of effective dimensionality. This entropy-based
definition has been used in neuroscience applications, for
example, in Ref. [96] to analyze transient amplification in
neural networks. Both measures capture the number of
dominant modes in the system. Thibeault er al. (Ref. [23])
call (a metric closely related to) the participation ratio-based
metric the “srank” (the difference being whether the maxi-
mum eigenvalue or sum over all eigenvalues is used as a
normalizing factor) and call the entropylike metric
the “erank.”

APPENDIX E: REVIEW: CALCULATING TWO-
AND FOUR-POINT FUNCTIONS FOR LLD.
COUPLINGS

‘We now review how to compute these two- and four-point
functions in a classic network model with i.i.d. couplings J.
The first- and second-order coupling statistics are

92

v =Z.

(v N

ij) =0 (E1)
The magnitude of a typical coupling is g/+/N. We refer to g
as the coupling strength. For the canonical dynamics
T[x](t) = (1 + 9,)x(¢), the network is quiescent for
g < 1 and chaotic for g > 1, with a sharp phase transition
as N — oo. In this paper, we assume that the network is
nonquiescent.

The two-point function C%(#,#,) can be computed
through a single-site picture that describes the dynamics

of a typical neuron embedded in the rest of the network,

with preactivation x(#) and activation ¢ (7). The single-site
dynamics are given by

(E2)

where #7*(¢) is a Gaussian field with mean zero and
covariance g2Cf(tl ,1,). We denote this by

7~ GP(0, CY). (E3)

C?(1,.1,) is determined self-consistently by enforcing

Cf(fl’lz) = (p(11)p(12)) &

where (---), denotes an average within this single-site
process, i.e., with respect to the Gaussian distribution of

n*(r). Once C%(1,,1,) has been determined, C%(11,1,)
follows easily. This single-site problem can be derived
through either a single-site cavity calculation (see
Ref. [97]) or a saddle-point condition in a path integral
(see Refs. [60,61]). For the i.i.d. couplings considered here,
there is a simpler heuristic derivation: In the neuronal input
Zj\':l Jij¢;(t), the correlations between the couplings J;;
and dynamic variables ¢;(¢) can be safely neglected to
leading order in 1/N, yielding both Gaussianity of 7*(¢) by
the central limit theorem and the second-order statistics
of Eq. (E3).

Clark ef al. [39] first computed W4 () using a dynamic,
two-site version of the cavity method, based on the neuron-
by-neuron definition [Eq. (24)]. This method finds w4 (7),
the off-diagonal contribution to W4 (), noting that the on-
diagonal contribution is simply C%(z;)C%(1,). A cavity is
first created by removing two neurons from the network
and allowing the rest of the network, the reservoir, to
generate dynamic activity. The cavity neurons are then
introduced, and their effect on the reservoir is treated

(E4)

(a) (b) © ., (@)
50 1 Ny 2,~p?
oo 201 ARk (x) 8 %
pi(t) 40 1
PC index k 1.5 PC index k |
¢ (4 30 A [ = 6
Pio(t) V‘—"\,,jf\\v/h\/\\/\/\/\/\
) 20 - 1.0 4l
Pso(t) ]
10 A 0.5 1 5.
pgooo(t) | 0 0.0 1
O 4
0 100 200 0 20 40 0 20 40 0 10 20 30
t T T T

FIG. 9. Relationship between principal component timescales and two- and four-point correlation functions. (a) Example activity
traces of principal components pf(t). (b) Empirical correlation functions for each principal component (PC), weighted by their

eigenvalues. (c) Same as (b) but weighted by the squared eigenvalue. (d) Averages over curves in (b) and (c), with comparisons to Cf (7)
and ‘I‘f (7,0). Dots, simulation results; lines, theoretical predictions. All panels describe the same network of N = 4000 neurons with
i.i.d. couplings with variance ¢*/N with coupling strength g = 6.
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perturbatively. This yields a pair of coupled mean-field
equations for the cavity units, generalizing the single-site
picture discussed above to a two-site picture. Finally, self-
consistency conditions are constructed by recognizing that
the cavity pair is statistically equivalent to any reservoir
pair. This calculation results in expressions for the four-
point function in Fourier space, given by

Cf (wl)ci (@,)

v () = : (E5)
. 1= 8% ()% (@)
for the activations, and
Wi (@) = Cy(0))Ci (@) + |U(@)PCL(0)CL (@)
+ U(@)C? (@) C (w,) + H.oc., (E6a)
2 Qx 0

1= SU (@) S (@)

for the preactivations, where @ = (@, ®,) and C (w) is a
cross-covariance between the preactivation and activation.
Note that, if the joint distribution of preactivations were
Gaussian, W% (r) and W?(r) would differ only by a
proportionality constant due to Price’s theorem [98]. The
more complex relationship observed here reflects the non-
Gaussian joint statistics across different neurons, which is
relevant because the network is nonlinear.

APPENDIX F: PATH-INTEGRAL CALCULATION
OF TWO- AND FOUR-POINT FUNCTIONS FOR
LL.D. COUPLINGS

The general program, for i.i.d. or structured couplings, is

as follows:

(1) Formulate the field theory. Begin with the path
integral Z[J] and average over the connectivity
disorder. Introduce auxiliary fields representing
two-point functions [such as C?(t,,t,)] along with
their conjugate partners. Use integral representations
of ¢ functions to enforce field definitions, factorizing
the exponential over extensive dimensions. This
yields a statistical field theory with action N times
an order-one function of the auxiliary fields.

(2) Solve the saddle-point equations. Find the saddle
point by setting action derivatives to zero. This
produces self-consistent equations for the two-point
functions, completing the standard DMFT analysis.

(3) Compute the Hessian. Calculate the time’~by— time?
Hessian matrix, which depends on four time vari-
ables (#,1,,13,14) and characterizes fluctuations
around the saddle point.

(4) Apply temporal separation limits. Impose the tem-
poral limits [Eq. (34)], making the Hessian blocks
translation-invariant functions of time differences
(71,7,). Transform to Fourier space to obtain a low-
dimensional, frequency-dependent Hessian whose
elements are functions of (w;, m,).

(5) Invert the frequency-space Hessian. Perform matrix
inversion to directly obtain ¥4 (@). If needed, apply
inverse Fourier transform to recover W4 (7).

Here, we consider 1.i.d. J with mean zero and variance
g%/ N. After performing the Gaussian integration over J, we
introduce an auxiliary field C#(z,,t,), defined by Eq. (17),
and its conjugate C?(1,, 1,) to factorize the action across the
neuron index i. This leads to a partition function for a
statistical field theory involving C?(,,1,) and C?(1,,1,),

7— / pC? / DE? exp (=NS[C*, &), (F1)
where the intensive action is
. | A A
S[c?, ¢?) = _§C¢C¢ —logW[C?,C?],  (F2)

and the single-site path integral is
w[c?, C?)
e 1.
= / Dx / D3 exp <i5cT[x] —52C¢2—§¢C¢¢>.
(F3)

1. Two-point functions

In the limit N — oo, the saddle point dominates this
integral. The derivatives of the action, which are zero at the
saddle point, are

oS R
= —C?(1),t 2(3(1)k(t))y, (F4
sy~ O ) PRy, ()

0 = Chn )+ (D) (FS)
5@4)([1,1‘2) 1542 1 2)/W»
where (- - -)y, denotes an average within the dynamic process
described by W[C?,C?]. In evaluating derivatives of the
action, we follow the rule that derivatives with respect to
C?(t,.1,) also affect C?(1,, ), and likewise for C?(z,.1,),
due to the symmetry in the action. Using the vanishing of
correlation functions involving only the conjugate field %(¢),
the saddle-point conditions yield

Cf(tleZ) = O’ (F6)
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Cl(t1. 1) = (p(1))p(12)) 1. (F7)

where (- - -), denotes an average within the dynamic process
described by W[C?,0]. This recovers the same single-site

process [Egs. (E2) and (E3)] and self-consistency condition
[Eq. (E4)] described in Appendix E.

2. Four-point functions

We now compute W4 (z) within the path-integral for-
malism. Fluctuations around the saddle point derived above
are governed by the Hessian of the action [60,99]. This
Hessian has blocks given by

y B 58
ettt ) = 5aa )60 . )

= —g* ((3(1))3(12), &(13)%(24)))
(F8a)
|

Z = exp (-NS[C?,0]) / DSCPDSC? exp (-

. t t B &S
crer(ti 12,13 14) = 5CH(11,17)8C (13, 1)

=—=I(t.1p.13, 1)

— P ((R(1)%(12), P(13)p(14))) -

(F8b)
&S
Heoeo(t1, 12, 13, 14) = 5CP(1,,1)5C? (13, 1,)
= —{(p(1))9(12), B(13)p(14))) -
(F8c)

where ((A,B)), = (AB), —(A) . (B),, and I(1,, 1, 13, 1) =
5(ty — 13)8(ty — t4) + 6(t; — 14)8(t, — t3). Expanding the
action to second order around the saddle point, the path
integral becomes

N<5C‘/’>T<Hc¢c¢ HC¢@¢)<5C‘/’>>
2\ sC? ngcqs Heopo J\SC? ) )’

revealing the structure of the Gaussian fluctuations around the saddle point. The covariance matrix among the fluctuation
variables 6C?(t,,1,) and 6C?(t,,1,) is 1/N times the inverse Hessian, yielding

N(3C (1. 12)8C (13, 14)) 5 = [Heser = HoneoH oy Heneo] ™ (1112, 13, 14).

In principle, we have all the necessary components to
evaluate this expression: The single-site dynamics are
known via the saddle-point condition, and the Hessian
blocks are given in terms of connected correlation functions
in this single-site process. We could then take the temporal
separation limits of Eq. (34) to obtain W% (z). The challenge
is that each Hessian block is a complicated time’>~by— time?
matrix that, for general values of the time variables, has no
analytic inverse. To circumvent this problem, we show in
Appendix G that the temporal limits of Eq. (34) can be
taken before taking the inverses. Under these temporal
limits, the Hessian blocks are

Heopo (s 1, 13, 14) = —C (7)) CL(7y), (F9)

Heopo (1. 1. 13, 14) = =8(11)8(z2) + 32 S%(11)S% (1),
(F10)
Heieo (11, 12,13, 14) = 0, (FI11)

where we used the fact that multiplication by —i%() is
equivalent to a functional derivative with respect to a source

at time ¢. Since the relevant quantities are now translation
invariant, i.e., depend only on 7, and 7,, we can transform
to Fourier space. In this representation, each Hessian block
becomes a frequency-dependent scalar,

Hpsen(@) = =Cl(a,)Cl(a). (F12)
Heveo (@) = =1+ ¢S% () S% (), (F13)
HC‘/’CV’ (0)) =0. (F14)

In summary, the full Hessian can be replaced by a 2 x 2,
frequency-dependent Hessian given by

H—( 0
—1+ 257

where we simplified notation by suppressing frequency
arguments via the shorthand C‘fz = C%(w,)C%(w,) and
§? = §?(w,)S? (w,). The Fourier-space function W7 (o)
is the upper-left element of the inverse of this matrix.
Performing the 2 x 2 matrix inversion gives

-1+ 92(5?2)*
-ct,

) @)
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Ctﬁ
=12 F16
T gt o

which agrees with the two-site cavity result [Eq. (ES)].

3. Adding sources

Above, computing W% (7) was simplified by C?(z,,1,)
appearing naturally in the statistical field theory resulting
from integrating out J. To compute ¥ (7), we need to
introduce a source-field term in the action.

Consider a general intensive action S[C; J|, where C'is a

collection of fields (e.g., C = {C?, C’¢}), and 7 is a source.
Our goal is to compute

2
—5logZ

7 , (F17)

J=0

which gives the fluctuations around the mean of the
quantity multiplying J in the action. To facilitate this
calculation, we introduce a new field U and set it equal to [J
using the conjugate U,

/DC/DU/DU

x exp (~NUU + NUJ — NS[C; U)). (F18)

Instead of taking the second derivative with respect to 7,

we set J = 0 and compute the fluctuations of U , measured
by Eq. (F17), in the augmented theory whose path integral
is

- /DC/:DU/DUexp(—NS[C, U, 0)), (F19)

where

S[c,u, 0] = 0U + S[c; U] (F20)
The Hessian of the augmented action, in terms of the

Hessian of the original action, is

o
H | s 0
2 T

Grso)" | & 1) (F21)

07 1 0

where
528 528 528

Hyp=——, = . F22
@ 5C,5C, Lsyac]a sJ58C, (F22)

The fluctuations of U are given by the bottom-right element
of the inverse Hessian evaluated at the saddle point. Using a
Schur complement to compute this element, we obtain

D
577 8

2 2 T 2
ety
70 L 872 " \sgsC 575C) 7

(F23)

with all quantities evaluated at the saddle point. By
applying this formula to the action of the i.i.d. model with
the source term —ijx added to the single-site path
integral [Eq. (F3)], we recover the expression for W% ()
from the two-site cavity method [Clark er al. [39];
Eq. (F3)]. For actions of the form S[C;J]=
—-JC, + J-independent terms, this formula reduces to
(6%/8T%) log Z| ;—o = [H™'] . as expected.

We now apply Eq. (F23) to the action of the i.i.d.
connectivity model with a source term for correlations
among preactivations. The action is

. 1 ..
S[c?, ¢ =—§C¢C¢—log/Dx/ch

2 VU
X exp <i5cT[x] - %xc@ —5 0t - 5xjx> .
(F24)

Computing the necessary quantities and taking the tempo-
ral limits of Eq. (34), we obtain, in Fourier space,

2(STy)"

&S 7S (g
—-Cis

s2- S 57T

), (F25)
where Ci = C(0,)C (w,) and 5, = S5 (,)S% ().
Substituting these into Eq. (F23) and using the frequency-
dependent Hessian from Eq. (F15), we obtain

92572

where U = ,
1 _92 S?z

¥y =Y, +|UPCh,+UC? +Hee.,
(F26)

in agreement with the two-site cavity result of Clark et al.
(Ref. [39]), given in Eq. (E6).

4. Other kinds of path integrals

Different path-integral formalisms have been applied to
neural-network models depending on the underlying
dynamics. The Doi-Peliti formalism [100] derives path
integrals from master equations for systems with non-
negative integer degrees of freedom (such as spiking neural
networks) that evolve according to master equations, using
an operator formalism as an intermediate step. In contrast,
we use the MSRJD formalism for continuous-time sto-
chastic differential equations, which naturally describes our
rate-based network dynamics. For a comprehensive dis-
cussion of different path-integral approaches in neural-
network theory, see Ref. [69].

041019-21



DAVID G. CLARK et al. PHYS. REV. X 15, 041019 (2025)

APPENDIX G: TEMPORAL LIMITS AND INVERSES

Here, we demonstrate, for the i.i.d. model, that the temporal limits in Eq. (34) can be taken before the inverses. This
allows us to work with a frequency-dependent Hessian. In this section, we use Einstein notation for integrals over time
variables (i.e., repeated time indices are integrated over). We would like to evaluate

W (21, 73) = U™ (11,13, 51, 52) K (51, 52, 53, 5) U™ () + 71,15 + 72, 53, 54) (G1)

in the limits of Eq (34), where U(tl, t2, t3, t4) = HCI/;C(/;(tl s t2, f3, t4) and K(tl, tz, t3, t4) = HCv/J@r/)(fl, t2, t3, t4) [nOte that
H oo (1, 1y, 13, 4) = 0 due to the vanishing of correlation functions involving only the conjugate field]. Restating Eq. (F8),

we have

U(ti 1. 13.1g) = =[6(t) = 13)8(1y — 14) + 8(t; — 14)6(t, — 13)] — LD (11)P(12), X(13)%(14) )

K(ty. 12,13, 14) = (p(11)(12), p(13) (1) ). (G3)
We assume temporal stationarity throughout this section
and consider only a = ¢.

We start by examining the properties of U(f;, 1, 13, 14).
U vanishes if one of the four time points is far [measured on
the timescale of C? (7)] from the other three. For 1, or 1,
this is a consequence of the perturbation associated with
x(t;) or x(r,) being far away; for 73 or f4, this is a
consequence of (¢(#;)), = 0 separating from the expect-
ation. U also vanishes if there is more than one time
point which is far from the remaining ones by the same
arguments. Thus, the time points need to be close in pairs.
|

(G2)

However, if 1, 1, are close and 13, #4 are close, but the pairs
are distant, U still vanishes since the perturbations asso-
ciated with X(z;) are both far. This leaves three possibilities
for a nonvanishing U: t;, t5 close and t,, t, close, but the
pairs are distant; ¢, #, close and 1, #; close, but the pairs are
distant; or all time points are close.

Separating the three possibilities into two subdomains
where all time points are close (¢) and where the time points
belong to either of the two pairwise separate (s) possibil-
ities, we write U = U, + U, where U, and U, are defined
to vanish on the respective other domain. On the separated
domain, U simplifies to

Us(tr, ty, 13, 14) = =[6(t) — 13)0(12 — 14) + 8(1) — 14)6(1, — 13)]

+ P80t — 13)S%(ty — ta) + S%(t) — 14)S%(t, — 13)],

where we used that the two distant contributions are
nonoverlapping to add them.

We assume that we can also decompose the inverse
into a contribution for separate pairs and a contribution where
all time points are close, U™! = U;! + UZ!, where again
U7! and UZ! vanish on the respective other domain. We
demonstrate that Uy ! is the inverse of Uy, and that U is the
inverse of U, by mnoting that U~'(t;,t,,5,5)
U(sy, $2, 13, t4) teduces to the contraction of U;! and U,
if t3 and ¢4, and hence s, and s,, are close; or to the contraction
of U7! and Uy if t; and t,, and hence s, and s,, are distant.

For Eq. (G1), we need U5 due to the limits of Eq. (34).
The fact that U reduces to U, in the limits of Eq. (34)
justifies taking the limits before inverting U. Furthermore,
these limits imply that, in Eq. (G1), s; and s,, as well as s3
and sy, are far apart. In this case, K simplifies to

K,(51.52.53.54) = Ch(s; = 53)Ch (55 — 54)

+ Cf(sl - 54)C£(S2 -s3).  (GS)

This justifies taking the limits of Eq. (34) for K.

(G4)

APPENDIX H: PARTIALLY SYMMETRIC
DISORDER

To demonstrate the flexibility of the path-integral
approach to computing the four-point function, we now
consider a generalization of the classic i.i.d. model in which
we introduce correlations between reciprocal couplings,
characterized by the following statistics:

2
g Fp

(Jijdke) = N (H1)

Here, p € [—1, 1] is a parameter that controls the degree of
symmetry in the connectivity. When p = 1, the connectiv-
ity is fully symmetric, while p = —1 corresponds to fully
antisymmetric connectivity. The case p = 0 recovers the
i.i.d. model. We express this partially symmetric connec-
tivity as a linear combination of two matrices, X and Y, that
are i.i.d. random with mean zero and variance 1/N,

lo
Jij =\ ¢ = lo|X;; + 7|[Yij +sgn(o)Y ],

(H2)
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where ¢ = pg”. In terms of X and Y, the path integral for this partially symmetric model is

Z[X,Y] :/Dx/chexpGéfciﬂx]—

We integrate out X and Y. To factorize the action over
indices spanning extensive dimensions, we introduce

ZQ{’ 1)

P(t).,1,) = conjugate: C?(1,,1,);

(H4)

=

?(t),1,) = , conjugate: S?(1,,1,).

(H5)

We obtain, for the disorder-averaged path integral,

:/Dc¢/DC¢/DR/DRexp(—NS[C¢,C¢,S¢,S¢]),

(Ho)
S[ct, ¢, 80,59 = _%CM:‘/' + gs¢§¢
—logW[C?,C?,8¢,87],  (H7)
w[c?, C?, 8¢, 8]
- / D / Dxexp (ich[x] - %cﬁé"’dﬂ
- 9; 3C0% — %6(;53‘4’56 - %"xs%) : (H8)

1. Two-point functions

To obtain the saddle-point solution, we compute the
derivatives of the action, under the rule that derivatives with
respect to S?(1,,1,) also affect 8%(1,,1,), and vice versa,
due to the symmetry in the action. This gives

58 R
— = —C?(1;,t %(t))x(1 H9
509 (1, 1) (t1. 1) + F(3(0)x(0))y.  (H9)

|
0 —1 + 2S7,
g | ek
0 e
0 oStC?

N N
. n . o ~ N
1/ g* — o Z Xk — 1/ % Z Y[%ig; + Sgn(0)¢ixj}>~ (H3)
=1 i=1

6S
s = O + e (10
% = o8%(11.12) + io(R(1) Py (HID)
Wff = oS + o)y (H12)

Setting these derivatives to zero yields the saddle-point
conditions,

Cl(t,.1,) =0, (H13)

Ch(t1.1) = (B(1)(12)) 4

8.1 = 3t = (G} L (H1S)

(H14)

where (---), denotes an average within the dynamic
process described by W[C?,0,5? 8?]. The single-site
process at the saddle point is described by

Tlx|(r) =

7 (1) + o[S% 0 9] (1), (H16)

7~ GP(0, CY), (H17)

where o denotes convolution. The symmetric structure pro-
vides a convolutional, nonlinear self-coupling o[S? o ¢](7)
in the single-site dynamics. The two-point correlation and

response functions C? (7) and S () must be determined self-
consistently within this single-site picture.

2. Four-point functions

Introducing the notation Cf = C‘f(a)k), Sf = S‘,{(a)k) for
k =1, 2, the frequency-dependent Hessian at the saddle
point is

0 0
o(sycy  o(shyct (HI8)
0 o —o287(89)*
o —c*(s7) st 0
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Inverting this matrix and isolating the upper-left
element, we obtain, in agreement with Clark er al
(Ref. [39]),

P T e L
* - *
11— g?S%% |1 - o(57)* 522

c?. (H19)

APPENDIX I: PATH-INTEGRAL CALCULATION
OF TWO- AND FOUR-POINT FUNCTIONS FOR
THE RANDOM-MODE MODEL

Having demonstrated the path-integral approach to com-
puting two- and four-point functions for i.i.d. couplings, we
now apply this formalism to the random-mode model. In
terms of the mode matrices L and R, the path integral is

Z[L.R] = / Dx / DR exp <ii§]:;5c,~T[xi] —iﬁ:‘l[LDR],.jfc,-gbj>. (11)

We would like to integrate out L and R, but this is complicated by them appearing together in a quadratic term in the action.
To simplify the integration, we introduce a set of M latent variables,

Za(t) =D, ZRia(ﬁi(t)’ (12)

and their conjugates Z,(¢). We use indices i, j for neurons and a, b for latent variables. The introduction of these latent

variables makes the action linear in L and R,

N
Z|L.R)] :/Dx/ch/Dz/Dﬁexp(ichiT
i=1

M
[xi] + izzaza - iZLiakiza - iZDaRiugbizu) . (13)
a=1 i,a i.a

We can now easily integrate out L and R. To factorize the action over indices spanning extensive dimensions, we introduce
the field C?(1,.1,) [Eq. (17)] with conjugate Q(1,.1,) as well as

1
Q(tl’t2) = N

with conjugate C’¢(t1, t,). The disorder-averaged path integral is

Z= /Dc¢/ DC‘¢/DQ/DQexp(—NS[C¢,C“/’,Q, 0)). (15)
S[c?, ¢, 0.0] = —%C‘ﬁQ - % 0C? —log W*[Q, 0] = allog W5[C?, C7)) p, (I6)
wWX[Q, Q] = / Dx / Di exp (ifcr[x] —%¢Q¢—%2Q5c), (17)

W3 [C?, C?) = / Dz / Dz exp <iﬁz—;zé‘/’z—;DziC¢2>. (18)

Thus, analysis of the path integral is made tractable by
recasting the problem as interacting neurons and latent
variables. The neuronal single-site picture is described by
W¥[Q, 0], and the latent-variable single-site picture is
described by W3 [C?, C?], where the subscript D reflects
that each latent variable has its own component strength.
This formulation introduces an extensive set of latent

variables z,(f), in contrast to the finite set of latent
variables, conventionally denoted by «,(¢), in low-rank
neural networks [42,44]. The statistics of the Gaussian
input to each single-site process (neurons or latent varia-
bles) are determined by the statistics of the other process,
creating a bipartite, mutually referential structure that also
arises in the cavity treatment of the problem.
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FIG. 10. Analysis of dimension of activity and covariance spectrum in the low-effective-rank limit. (a) Top: dimension of activity PR?
versus effective rank aPRP (a = 1) for various coupling strengths g.;. Component strengths D, are constant for a/N < PR? and 0
otherwise. Small dots, individual simulations; large dots, means over ten simulations; solid lines, theoretical predictions; dotted lines,

small-PR” expansion, K?(g.¢)PRP. Inset: ratio of proportionality factor K?(ge.) to PRfiAdA Versus g.g. Bottom: same analysis for
preactivations. (b) Top: rank-ordered eigenvalue plots for activation covariance matrix Cﬁ(O) Dotted vertical lines indicate NPRP.
Bottom: same for preactivations. All simulations use N = 6500 neurons.

1. Two-point functions Cl(t1.1) = O, (1).1,) = 0, (113)
Following the steps outlined at the end of Sec. F2, we
first compute the DMFT by calculating the saddle point. C‘f(;l ) = (p(t) (1)) . (114)
The derivatives of the action are
5 0. (11, 12) = al(2(t1)z(12)) 4p) - (115)
g = —0% (1. 1) + D> (2(1)2(02)s ), (19)
5CO (1, 1) oD where (---), and (---),, are averages within the dynamic

processes described by W*[Q,,0] and W% [C?. 0], respec-

oS tively. These single-site processes are
= =0(11.1) + a{{z(t)z(t2))y:) . (110) Y seiep

5C¢(t1’ t2)
Tlx|(2) = n* (1), (I16)
58 b ale N3

50 1) =C(ty. 1) + (&(1)x(12)) g, (111) 2(t) = (1), (117)

5S where 7*(t) and 7n*(¢) are Gaussian fields,

————— = =C?(11. 1) + (P(11)p(12)) . 112

B0 = O+ @), (112 000 "
where (---)yx and (---)y: are averages within the 7 ~GP(0, D2C?) (119)

dynamic processes described by W*[Q,0] and

W5 [C?, C?), respectively. Setting these derivatives to zero
yields

showing that the neuronal and latent-variable single-site
processes have mutually referential statistics [101].
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Solving for Q,(t,,1,) by combining Egs. (I15), (117),  the simple off-diagonal blocks, reflecting the interaction

and (119), we obtain Q,(1,,1,) = ar,C%(1),1,), with r, ~ Petween neurons and latent variablgs, .
This yields the expression for W} [Eq. (38)]. To obtain

Y, we add — %xj x to the neuronal single-site path integral

defined by Eq. (10). Consolidating these results
yields Eq. (36c¢).
[Eq. (I7)] and compute

2. Four-point functions

The frequency-dependent saddle-point Hessian is

&S s
0 ar, ‘ 0o -1 s S 5750
¢
ary —aryCi, -1 0
H = 120
0 -1 o s (120)
-1 0 (5%)° —Chs

The upper-left block, corresponding to the latent variables, P o— Y <1 +
. . . o * 12
is related to the Hessian of an i.i.d. network with linear
dynamics and a heterogeneous distribution of single-neu-

aPRP

Inserting these into Eq. (F23) we obtain

(121)

>|U|2c +UCY +He., (122)

ron scale factors D,; the lower-right block, corresponding where U = ggffS){2 /(1= ggffS‘fz) [Eq. (E6b) with g = g.g]-
to the neurons, is related to the Hessian of an i.i.d. network Here, we have used the following formula to invert the

of nonlinear neurons [Eq. (F15)]. They are coupled through ~ Hessian:
|

-1 _btcPda _ad+bcr  _ 1
0 a 0 -1 [1-ac|? 1—(ac)* [1-ac|? 1—(ac)*
* __c _ 1
a b -1 0 _ l-ac 0 l-ac 0
0 -1 0 c _a‘d+bc _ 1 _ |a>d+b _a
[1-ac|? 1—(ac)* [1-ac|? 1—(ac)*
-1 0 ¢ d
- 0 -2 0

1—ac

(123)

APPENDIX J: PATH-INTEGRAL CALCULATION OF TWO- AND FOUR-POINT FUNCTIONS FOR THE

RANDOM-MODE MODEL WITH SINGLE-UNIT HETEROGENEITY

We incorporate the generalized nonlinearity @y (x) into the path integral, as well as a source term for the normalized
variables, and integrate out L and R. To factorize the action over indices spanning extensive dimensions, we introduce the

order parameters

N

®(t1. 1) Z (t1) Dy, (1), conjugate: Q(11.1,);
M

tlvt2 Z tl 24 t2 Conjugate: C(/)(tl,lz),

where @ (1) = @y [x;(#)]. The resulting action and single-site path integrals for this system are

A A | B A A
S[C®,€%,0,0] = =5C%0 = 50C" = (log Wy[Q. 0; T])g — allog Wi [C®, CT])),

W50, 0:J) = /Dx/mexp <i5cT[x] —%%Qq)g—%xgx—%(/)j(/)),

. 1 . 1
W5 [C®, C®) = / Dz / D3 exp (iﬁz—isz)z—EDz%Cq’%).
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1. Two-point functions

The saddle-point calculation proceeds similarly to the
nonheterogeneous case of the random-mode model. We
obtain

Co(t1. 1) = Ou(11.1) = 0, (Jo)

C (11, 1) = ((@y(11)Py(12)) g J7)

0. (11, 12) = a((2(t1)z(12)) 4p) - (J8)

where (---), and (---),, are averages with respect to

W5l04,0;0]  and W3[C®,0], respectively (note
that Wj[Q,,0;0] does not depend on @). Using
(z(t))2(12)) y p=D*C2(t),15) and, consequently,
Q,(t),t,) = ar,C2(t,,1,), we obtain the self-consistent
single-site dynamic process

T[x] (1) = n*(1), (J9a)
" ~GP(0,ar,C?), (J9b)
CL(11.12) = ((Pg(11)Pp(12)) 4 V- (J9¢)

The self-consistency condition [Eq. (J9¢)] is identical to that
of an i.i.d. network, but with an average over @ ~ P(), in
addition to the usual Gaussian average over 1" (¢), to account
for single-neuron heterogeneity.

2. Four-point functions

To write down the solution for the four-point function,
we define new two-frequency correlation functions with an
outer average over 6 ~ P(@),

CY, = ((©gDy),, (@) (DgDp)  (@5))g- (J10a)
= () () ), o
S = ((Dph) (1) (Dph) 1 (1)), (J10c)

along with the usual shorthand C$, = C?(,)CS(w,).
The frequency-dependent Hessian at the saddle point is

0 ary 0 -1
ar, —aryCP -1 0
H = , J11
0 -1 0 89 (i)
-1 0 (8%)" —€%

where the new Fraktur variables are defined in Eq. (J10).
We invert the Hessian using Eq. (I23) and identify the
upper-left element as @y (@),

¥ 1 o2
o c_‘g o ar 8%y o 012)
— .
11— ar,8|? 12

Combining the inverted Hessian with the relevant quan-
tities for computing fluctuations of normalized variables,

0
=l R RIS
%
where
S = ((@pt) (1) (@p) (@2))g.  (I14)
st= () @)(%) @). W)

we obtain for the normalized variables ¢; (1),

¢L 1 C? ¢y
P = [|A|2 <£+—D—12> + (AL+H.c.> + 1] ct,,
Cl, PR, o

(J16)
where

ar,S?
A= 2912

= J17
1—ar2§{1/)2 (17)

3. Four-point functions for firing-rate heterogeneity

Upon specializing the above general results to the case
where 6, contains a single gain parameter G;, we obtain the
four-point functions for unnormalized [Eq. (46a)] and
normalized [Eq. (46b)] variables given in the main text.

Note that, like the distribution over component strengths
D,, two-point functions of activity depend only on the
second moment of G;, and four-point functions depend
only on the second and fourth moments of G;.

For “random-readout” gains with the same distribution
as the recurrent gains (see main text), the four-point
function is

readout 1
P — [(W_ 1>(|1 _ggffsth'z + |g§ffS(f2 2)

IR |ngfs¢2|2] BT )
D e 1 ’
aPR 11— ngfstfz 2

readout d 2P
where C, = C}, = ¢5C,.
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We conclude with a note on gain modulation in recurrent
neural networks. It has been shown that modulating single-
neuron gains while keeping synaptic weights fixed has
great expressive power over the dynamics of recurrent
neural networks [102]. Here, we consider random gains
rather than judiciously chosen or learned gains. In particu-
lar, they are sampled independent of the connectivity.
However, our framework could be extended to model gains
that are related to the connectivity and, more ambitiously,
could be extended to model learned gain parameters (or, as
explored in the Discussion, learned connectivity).

APPENDIX K: PATH-INTEGRAL CALCULATION
OF TWO- AND FOUR-POINT FUNCTIONS FOR
THE RANDOM-MODE MODEL WITH
DIAGONALLY STRUCTURED OVERLAPS

To generate matrices L and R with appropriate correla-
tion structure, we express them in terms of independent
Gaussian random matrices X!, X2, and Y, each with
variance 1/N,

V - |,0a X |pa Yl(l? (Kl)
= V1= pa|X3, +sgn(pa)VIpal Yie-  (K2)

We begin with the path integral containing latent
variables, insert this parametrization of L and R, and then
integrate out X, X,, and Y. To factorize the action over
indices spanning extensive dimensions, we introduce

P(t), 1) qu )¢ conjugate: Q(1,,1,);
(K3)
1 Lo , .
t, ) =— conjugate: R(t;,1,);
(K4)
[],tz ZZQ([] 24 tz s Conjugate: C¢(t|,l2);
(K5)
1 M 52 (tl) A
R(t; 1) =~ Dup,—-"2,  conjugate: S?(t,,1,).
! N; 81,(1,) !
(Ko6)

The resulting path integral, action, and single-site path
integrals are given by

_/Dc¢/D€7¢/DS¢/DS"’/DQ/DQ/DR/DRexp (-NS[c?,.¢?, 5.8, 0.0.R.R)). (K7)

. . P | PR RS IR A
S[c?, ¢?,5%.58.0,0.R.R] = —5C0 -7 0C" +55'R —|—§RS‘/’ (K8)
~log W*[0. Q. R. R] - a{log W5, ,[C?. €. 8%, 57)) , . (K9)
A 1 1o, i A
W0, 0. R, R] = /Dx/mexp <i5cT[x] —§2Q2—5¢Q¢—%2R¢—%¢R2), (K10)
. . 1 1. ' R
W5, ,[C?. C?, 5. 89] = / Dz / D3 exp <iﬁz—§D22C¢2—zzC‘/’z—%DpﬁS"’z—%DpzS‘/’%). (K11)
1. Two-point functions 5S A
We first calculate the saddle-point conditions by taking 755(/,(” ) =R(t.1,) +la<D,0<Z( 1)z (fz)>WW>Dp (K14)
the derivatives of the action,
5S
58 . ——————=R(1;.12) +ia{Dp{z(1,)2(t) ) y= ) (K15)
— (1.t D2(3 t K12)  68%(1,,¢ Yoo o
509 (1 1,) O(t1,1) +a(D*(2(1)2(12)) s >D,, (K12) (t1.12) 2
58 05 & (10, 1) + (R()%(82)) (K16)
esaram——— X X
= —0(t), 1) + al{z(t)z(t2) ) e . (K13 50(1, 1 b2 PR we
5 (1, 15) O(t1, 1) + a({z(1y) (2)>WD>p>D,p (K13) O(t1. 1)
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#ﬁm = —CO(t1.12) + (P (12) ).
% = 81y, 1) + i3 (0)(12) )
% = §9(t1. 1) + i{p(1)3(12) -

The saddle-point conditions yield
Cl 11, 1) = 0u(11.1) =0,

Ci([h ) = (p(t)d(t2)) %

$t00.6) = 34.0) = (S |

0,(t1,tr) = a<<Z(tl)Z(t2)>*D,p>D,p’

(K17)

(K18)

(K19)

(K20)

(K21)
(K22)

(K23)

R*(tl,tz)—R*(tz,t,)—a<Dp<§§E2;>*D’p>D’p, (K24)

where (--+),p , and (- - ), are averages within the dynamic
processes  described by Wi, /,[C{,/i, 0,857,571 and

W*[04,0,R,, R*}, respectively. This yields neuronal and
latent-variable single-site processes described by

Tlx|(r) = (1) + [Ry 0 9](2) (K25)
2(1) = n*(1) + Dp[S% 2 2] (1), (K26)
where the Gaussian fields have statistics
i~ GP(0, Qy), (K27)
7~ GP(0, D2CY). (K28)
This gives rise to the single-site problem stated in Sec. VIIL.

2. Four-point functions

The frequency-dependent Hessian at the saddle point is

0 u 0 0 0 -1 0 0
w —vClct x,c? x5, C? -1 0 0 0
0 x,C¥ 0 —w* 0 0 0 1
" 0 x¢0  —w 0 0 0 1 0 K20
1o -1 0 0 0 s?s? 0 0 (K29)
-1 0 0 0 | (s{s) —cicy (sPyreg (sh)ct
0 0 0 1 0 stct 0 —s?(s?)
0 0 1 0 0 stct (st st 0
where 3. Sigmoidal parametrization of overlaps
5 To model structured left-right mode overlaps, we used
u=a(D%c\0)p . (K30)  the following sigmoidal form:
v=a(Do1]*|o2[)p . (K31)
2
w = a(D*p*c’6,) ., (K32) Pa =7, (1 - ), K35
: e ! 1+ exp[_ﬁp(a/N - uﬂip)] ( )
x1p = a(D’po, ‘62|2>D,p’ (K33)
1 = = P
o = for k= 1.2. (K34) where p, 0. at a/N ’jlﬂlp The parameter y, se.ts the
1— DpSf overall magnitude and sign of the overlaps, while f,

Isolating the upper-left element of the inverse of this matrix

yields Eq. (51).

controls the steepness of the transition. We fixed
B, = 16, varied y,, and set up;, such that (Dp), , =0,
thereby eliminating strong self-couplings.
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APPENDIX L: TWO-SITE CAVITY
CALCULATION OF FOUR-POINT FUNCTIONS
FOR THE RANDOM-MODE MODEL

While the path-integral approach provides a systematic
framework for analyzing neural-network dynamics, the
cavity method offers an intuitive, complementary perspec-
tive. This section provides an overview of the cavity
analysis for the random-mode model. While these
approaches yield equivalent results, they differ in their
methodology: The path-integral approach focuses on fluc-
tuations around the saddle point in a field theory, whereas
the cavity approach examines perturbations induced by a
subset of held-out variables. Here, we compute the four-
point function using a two-site cavity approach, noting that
the two-point function (which, if desired, could be com-
puted using a single-site cavity method) is the same as that
of an i.i.d. network with appropriate g.g;.

Leveraging Eq. (I2), we reformulate the network as a
bipartite system of neurons and latent variables and extend
the cavity calculation of Clark et al. (Ref. [39]) to both
groups. This leads to separate, mutually referential cavity
pictures for each group, mirroring the two single-site path
integrals (Sec. IV). As in the path-integral formalism, self-
consistent expressions in one picture are defined using
averages from the other. Unlike the path-integral approach,
which derives W?(z) using its time-by-time definition
[Eq. (25)], the cavity method derives this function using
its neuron-by-neuron definition [Eq. (24)].

The cavity method we employ, schematized in Fig. 11, has
two key features that distinguish it from simpler cavity
calculations. First, it uses a two-site structure: We consider
the simultaneous removal of two neurons, or two latent
variables, from the network, rather than just one. This allows
us to study cross-correlations between neurons. This
approach was previously used in Clark et al. (Ref. [39]).
Second, it incorporates a bipartite structure: We treat both
neurons and latent variables as dynamic objects, creating
separate but mutually referential cavity pictures for each
group. Such bipartite structure, without the two-site structure,
has been used in cavity calculations in the Hopfield
model [69,103,104]. Note that these two features are
distinct: The two-site aspect refers to the number of neurons
removed in each cavity, while the bipartite aspect refers
to the types of variables considered (neurons and latent
variables).

To apply cavity techniques, we reformulate the network
as a bipartite system of neurons and latent variables,

Tle](r) = Liaza(0). (L1)
a=1

Za(t) :Da ZRja¢j(t)7 (L2)
j=1

latent-variable reservoir

a,be{l,..., M}

neuron reservoir

i,je{l,...,N}

neuron cavity

w,v e {0,0'}

latent-variable cavity

a,B€{0,0'}

FIG. 11. Schematic of the two-site cavity approach for the
bipartite representation of the random-mode model. Left: neuron
cavity, considering the introduction of neurons x((#) and x (¢).
Right: latent-variable cavity, considering the introduction of
latent variables z5(r) and zg (¢). The cavity pictures are coupled,
with averages from one appearing in self-consistent equations for
the other.

as done in the path-integral approach. In the two-site cavity
calculation, we keep track of various intermediate quantities
to order 1/+/N, leading to an expression for ¥# () accurate
to leading order (order one), which we identify as W% (z).

To distinguish between different types of variables and
their indices, we use the following notation. Neurons are
indexed by i,j€{l,...,N} and latent variables by
a,be{l,...,M}, as usual. For the cavity variables, we
introduce special indices: Neuronal cavity variables are
indexed by u,v€{0,0'}, while latent cavity variables are

indexed by a, g€ {0,0'}.

1. Neuronal cavity

We begin by introducing two neurons, x( () and xy ().
The leading-order (1/ V/N) effect on the latent variables is

‘ M
52, (1) = / > S, (00D, S Rud,(d), (1L3)
b=1 }

ne{0,0

where S%,(t;,1,) is the response function of the latent
variables. The dynamic equations for the cavity neurons are

/ CAE ()b (), (LA)

ve{0,0'}

nu(t) = ZLuaZa(t)’ (LS)
a=1
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M
- \/N Z LﬂanR,,sz,,(ll, 12).

a,b=1

F;u/(tlv t2) (L6)

Defining the cavity-field time-average cross-covariance as

Chy(@) = LoaLyyCiy(@). (L7)

a,b

we obtain the following expression for the cross-covariance
of the cavity units, up to order 1/+/N:

Cl (@)= 5% (@) PCly ()

L (8% (@) Foy (@) + 8% (@) Fyol@)]C ().

VN
(L8)
Our goal is to compute the parameter
?(@) = N{Chy (1) Chy (@2)) (L9)
VAR 00 \@1)C 00\ @2)) 1, p >

where (-); p denotes an average over L, D, and R. To
evaluate this, we need to square and disorder average
Eq. (L8). This requires us to consider several two-
frequency correlation functions, which we define as

Pty (@) = (Fo (@) Foo(@2)).p e (L10)

Pre iy (@) = (Fg (1) Fo(@2)) p e (L11)
Ce oo (@) = V(i (@) Cly(@2)) pge (L12)
Per o (@) = N(Cly(@1)Cly (@) pp- (L13)

00" 00"

These have all been scaled to be order one. We can evaluate
these I'..(w) functions due to the independence of the
couplings and dynamic variables in the expressions defin-
ing them, which is a consequence of the cavity construc-
tion. Of these, the only nonvanishing ones are

Lo o (@) = a<C§A(a)1)C(ZA)(A)(w2)>L,D.R

PN (Cy (1) Coy () (L14)

LDR’
FFO()’FOO/ ((0) = arn + a2N<D2 S(Z)O/( )Séﬁ/ (w2)>L,D.R7
(L15)

where 0,0’ denote the indices in the latent-variable cavity
picture.

2. Latent-variable cavity

We now introduce two new latent variables, z4(f) and
2y (1). The leading-order (1/+/N) effect on the neurons is

(L16)

5 (1) = / erS (112) D Liaza(l)

ac {00}

where S;’;-(tl, t,) is the response function of the neurons.
The dynamic equations for the cavity latent variables are

a0 =Dura) s 3 [yl 1))
ﬂe{oo}
(L17)
where
N
= ZRia¢i(f) (L18)
o1
N
Gyt 1) = VN Z RiaLj/}S?;(th[Z)- (L19)
|

Defining the time-average cavity-field cross-covariance as

Cls (o) Z RR 5 Cl(w (L20)

we obtain the following expression for the cross-covariance
of the cavity latent variables up to order 1/v/N:

Ciy (@) = DDy Cry ()

00y
1
+\/N[ 00,(a))C00,(a))+D0/G00( )CA()(w)]
(L21)
We aim to compute the parameter
yi (@) = N(Chy (01)Chy (@2)), - (122)

by squaring and disorder averaging Eq. (L21). This requires
us to consider several two-frequency correlation functions,
which we define as

rGﬁﬁ’GOO’ (w) = <G66/(@1)G007<w2)>£\1{0 D } (L23)
o

FGSG,G()/() ((D) = <G66/(a)1)G6/6<a)2)>5\1{iD . }’ (L24)
o

5, @) = VI Gig o) Clgln)) 1 (129

Tty @) = N{Coy o) Clglan)) o (L26)
o

Again, we can evaluate these I'. (@) functions due to the
independence of the couplings and dynamic variables in the
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expressions defining them. The nonvanishing ones are

Lo o (@)= C:/i(a)l)Ci/:(a)z) +N<C<q)l)o’ (o, )Cg)o' (w2)>L,D,R’
(L27)

FG()()’GOO’ (0)) = Sf (a)l )Sf (CUZ) + N<S§()’ (CU] )Sg)()’(a)z)>L,D’R’
(L28)

where 0,0’ denote the indices in the neuronal cavity
picture.

3. Combining the two two-site cavity pictures

To combine the results from both two-site cavity
pictures, we use the following relations:

Ci () = DXCL (), (L29)
o) = 28 G o) (L30)
Sty (@) = =[St @Pw(e).  (L31)

Using these relations and the definitions of the I'..(w)
functions [Eqs. (L10)—(L13) and (L23)—(L26)], we obtain

Leren (@) = aryCL (@) Ch () + Pyi(w),  (L32)
Lryry (@) = ar[l + arle, 6, (@)],  (L33)
Ly 0, @) = Cho)Chwn) + p9(@).  (L34)

L6 6oy (@) = % (w))S% ()
X [14 8% (@)S3 (@) r, r, (@)]. (L35)

We solve Eqgs. (L33) and (L35) simultaneously, yielding

ary

I'r r (@)= s L36
Foo oo @) 1 - arzS',/i(a)l)Sf(wz) ( )
e 1= aryS%(0,)S% ()

With these solutions, we express y (@) and y? (@) in
terms of the I'..(w) functions. Switching to frequency-
suppressed notation,

vi =nle o+ nra(Taye, +He)Ch,  (L38)
Wf = |S[{§2|2FCZO,C30, + (FFOO’FOO’ S(fZ + HC)C?Z (L39)

Now, we substitute Eq. (L38) into Eq. (L39). Using
‘I’f = l//f + C‘f’z, we obtain

1 1- |9e2ffstfz g ¢
aPR” || — ggffS(f2|2 .

1 - |g§ffo2|2 C?z
11— ggffs(fﬂz

WL = g STl | %5 +
(L40)

where we used the previously defined quantities g2 = ar,

and PR? = r3/r,. Equation (L40) can be solved for ‘P(f,
yielding

@
‘Pf _ 1 +a1>%|9§f5512|2 ({;2‘
1 —gesz512|2

(L41)

This result is identical to Eq. (38) derived using the path-
integral approach, demonstrating the consistency between
the two methods.

APPENDIX M: NUMERICAL DETAILS

1. Numerics for theory

To validate the theory, we used networks with dynamics
defined by T[x](r) = (1 + 9,)x(¢) and with nonlinearity
¢(x) = erf(y/nx/2). For all connectivity models, except
those with structured L — R overlaps (Sec. VII), the single-
site two-point functions C? (z) and $%(z) depend only on
Jerr and can be numerically calculated as in i.i.d. networks
(see, e.g., Refs. [10,105]). In summary:

(1) Since 5(r) is Gaussian, so is x(¢) for this linear form
of T[], allowing us to write C?(z) in terms of
Gaussian integrals over x(¢) and x(7+ 7), which
have marginal variance C?(0) and covariance
C?(z). Because of our choice of ¢(x), this expres-
sion simplifies to

Ci(2) |
V(CE(0)+2) - Ci(2)?

2
c? () :;tan‘l (M1)

(2) Squaring the single-site picture gives a second-
order ordinary differential equation (ODE) 02C% (7) =
Ci(7) — g:C%(z). Since the rhs depends only
on C%(z) and C(0), we can consider it to be the
negative derivative —0V/dC%(r) of a potential
V(Cy(z),C5(0)) with an explicit dependence on
the initial condition C% (0).

(3) The rhs is integrated with respect to C% (z) to provide
an expression for V(C% (), C%(0)), which due to
our choice of ¢(x) simplifies to
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V(CH(E) CE(0) = =5 C0P + 2 \/ (0 +2) -cier+ amcte)]

(4) Restricting to solutions with C%(z) > 0 as 7 — oo
and 0,C%(7)|,_o = 0, enforcing conservation of
energy gives  V(C3(0), C5(0)) = V(0. C5(0)).
which can be solved for C%(0) by numerical root
finding.

(5) Finally, Euler integration of the [C%(7),0d,C%(7)]
dynamics with these initial conditions gives its full
time course, along with C? (7) via Eq. (M1).

We integrated the Newtonian ODE from 7 = 0 to 7,,,, =

200 with step size dr = 0.025. We then use an FFT to
obtain the frequency-space representation. The frequency-

space representation of the response function Sf (w) was
computed directly as

, (M3)

with ( =1/y/1+ (x/2)C%(0). Various expressions
for ‘P (a)l,a)z) were then computed in frequency space
before transforming back to the time domain by a two-
dimensional inverse FFT.

For structured L-R overlaps, the O(1) self-coupling in
the single-site process makes x(¢) non-Gaussian, prevent-
ing the use of Gaussian integrals in the DMFT solution. We
therefore obtain the solution via standard numerical meth-
ods, enforcing self-consistency among the #*(¢) correlation
function Q,(z), the self-coupling kernel R, (7), the

response function % (7), and the ¢(¢) correlation function

C? (7). In summary:

(1) Seed values for kernels are set as C¢( ) =
exp[—(7/15)%] + 107*5(z) and 5% (z) = 0.

(2) Qo(r) and Ry(7) are computed in Fourier space
using the current values of C%(z) and SY(z) via
Eq. (49), with the average taken over (D, p).

(3) A set of Ngmple = 10* instances of #* are sampled
according to the Gaussian process kernel Qy(z) by
standard spectral methods.

(4) Each of Ny single-site processes x,(t) is Euler
integrated according to Eq. (47a) with the input 77} (¢)
and self-feedback by the convolution between R(7)
and ¢ (x,(1).

(5) These time series ¢(x (7)) and nf(z) are used to
compute empirical values (C? (z), $?(z)) for the auto-
covariance and response. The latter is computed by the
Furutsu-Novikov theorem: $?(w) = C?(w)/C"(w).
The numerator is estimated using these time series,
while C"(w) is simply Qg (w).

(M2)

(6) After N;., = 300 repetitions of steps (1)—(5) with
smoothed updates

Ch(z) < 02C?_ (z) +0.8Ch(z), (M4)
Sh(z) < 0257 (z) +0.8Sh(z)  (M5)

as new seed values for the upcoming mth iteration,

the final numerical estimates for C% (z) and % (7) are

computed as the averages over the last 50 iterations.
We used a temporal discretization 7,,,, = 120, dz = 0.04.
With these quantities, the various components of Eq. (51)
and the expression for ‘I“,/'( are straightforward to compute.
We took (-)p. , averages in this case by averaging over every
other discrete value of D, and p,.

2. Simulation details

Each network was integrated via Runge-Kutta with
dt = 0.05. The empirical lagged covariance matrix was
computed by averaging over Ny, individual covariance
estimates, each of which is based on 7= 2000 discrete,

evenly spaced time samples t'°°P with tZ‘"’" t;"”’ﬁ =1,

Nluup
(/) llou ’]oop
e < _lzqs g, _T>> |

iloopzl

(M6)

The value of Ny, varied but was generally > 50 and
always chosen to ensure saturated dimension values, i.e.,
T'Nyoop > N. Specific quantities of interest, such as PR? or
¥¢(z,0), were computed using this estimate.
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