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Studies of the dynamics of nonlinear recurrent neural networks often assume independent and identically
distributed couplings, but large-scale connectomics data indicate that biological neural circuits exhibit
markedly different connectivity properties. These include rapidly decaying singular-value spectra and
structured singular-vector overlaps. Here, we develop a theory to analyze how these forms of structure
shape high-dimensional collective activity in nonlinear recurrent neural networks. We first introduce the
random-mode model, a random-matrix ensemble related to the singular-value decomposition that enables
control over the spectrum and right-left mode overlaps. Then, using a novel path-integral calculation, we
derive analytical expressions that reveal how connectivity structure affects features of collective dynamics:
the dimension of activity, which quantifies the number of high-variance collective-activity fluctuations, and
the temporal correlations that characterize the timescales of these fluctuations. We show that connectivity
structure can be invisible in single-neuron activities, while dramatically shaping collective activity.
Furthermore, despite the nonlinear, high-dimensional nature of these networks, the dimension of activity
depends on just two connectivity parameters—the variance of the couplings and the effective rank of the
coupling matrix, which quantifies the number of dominant rank-one connectivity components. We contrast
the effects of single-neuron heterogeneity and low-dimensional connectivity, making predictions about
how z-scoring data affects the dimension of activity. Finally, we demonstrate the presence of structured
overlaps between left and right modes in the Drosophila connectome, incorporate them into the theory, and
show how they further shape collective dynamics.
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I. INTRODUCTION

The collective activity of a high-dimensional nonlinear
system is determined by the structure of the interactions
between its elements, but the mapping from structure to
activity is generally analytically tractable only for limited
forms of structure. In systems neuroscience, structure in
synaptic connectivity controls the function of a neural

system by determining what patterns of activity are
produced by populations of neurons. This paper studies
this mapping in the context of nonlinear recurrent neural
networks, used widely in neuroscience as models of neural-
circuit dynamics [1–3] and in machine learning as systems
for sequence processing [4–7]. While these models omit
many aspects of actual neural circuits, they capture several
of their fundamental features, including their large scale,
nonlinear units, and recurrent interactions. Functionally, a
key property of such systems is that, like real neural
circuits, they can generate rich time-varying activity in
the absence of external input [8,9].
Theoretical studies of nonlinear recurrent neural net-

works, including the pioneering work of Sompolinsky et al.
(Ref. [10]), often focus on the case of independent and
identically distributed (i.i.d.) couplings or simple variants
thereof [11]. Such disordered networks produce high-
dimensional chaotic activity, reminiscent of asynchronous
cortical activity observed in vivo [10]. Initializing recurrent
neural networks so that they exhibit chaotic dynamics has
also been shown to facilitate subsequent learning [12–16].
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Experimental access to large-scale connectivity structure
creates an opportunity and imperative to develop theories
that explain models beyond those with i.i.d. couplings.
Recently, large-scale synaptic reconstructions of neural
circuits, or “connectomes,” have become available in
multiple species, including the full brain of Drosophila
melanogaster [17] and increasingly large portions of
mammalian circuits [18–21]. These large-scale connec-
tomes reveal that neural circuits deviate substantially from
the i.i.d. assumption, as previously demonstrated via the
presence of small-scale motifs [22]. In particular, in
accordance with real-world networks more generally [23],
neural circuits appear to exhibit low-rank structure in which
the connectivity is well described by fewer rank-one
components than the network size (we demonstrate this
explicitly for the Drosophila connectome in Sec. II A). In
neural-network models, recurrent or otherwise, such struc-
ture emerges naturally in several contexts, including when
connections depend on distance in physical or feature
spaces [24–26] or when networks are trained on tasks with
low-dimensional structure [27–29].
In parallel with the development of large-scale connec-

tivity maps, recent advances in recording technologies,
including silicon probes [30] and large-scale calcium
imaging [31,32], now enable the activities of many neurons
to be monitored simultaneously, with the latest datasets
including hundreds of thousands of neurons or more [33].
This technological progress has enabled researchers to
characterize collective properties of neural activity rather
than focusing solely on single-neuron responses. These
collective properties capture how neurons interact and
reveal distributed computational processes that are visible
only with high-yield recording technologies [34]. Such
population-level features are typically analyzed using
dimensionality reduction techniques like principal compo-
nents analysis [35–38].

A. Relating connectivity and collective-activity
structure analytically

We currently lack analytical tools to predict relationships
between connectivity structure, described by connectomics
or other datasets, and collective activity, described by large-
scale neural recordings. Dynamical mean-field theory
(DMFT) is a theoretical tool from statistical physics widely
used to analytically characterize activity in large nonlinear
recurrent neural networks. Although recent advances in
DMFT have extended these techniques to describe collec-
tive features in networks producing high-dimensional
chaotic activity [39], these calculations have been limited
to i.i.d. connectivity, or connectivity with simple correla-
tions between reciprocal couplings. Extending such calcu-
lations to more complicated connectivity structures rapidly
becomes unwieldy. Consequently, such analyses have not
been performed for networks whose connections are con-
strained by the statistics of connectomic or other datasets,

limiting our ability to leverage these datasets for theoretical
insight.
One tractable approach has been to study networks

with very low-dimensional connectivity and thus activity
(specifically, in the limit where the rank of the coupling
matrix remains finite while the network becomes large; see
Sec. II C). However, connectomes, like that of Drosophila
considered in Sec. II A, do not support this finite-rank
assumption. Furthermore, while neural activity recorded in
experiments is often low dimensional, this may be inherited
from the low dimensionality of experimental tasks; in more
complicated tasks or spontaneous states, activity is typi-
cally higher dimensional [31–33].
To address these limitations and challenges, this paper

makes two contributions.
(1) A tractable model of neural-network coupling ma-

trices that we call the random-mode model. Moti-
vated by the Drosophila connectome considered in
Sec. II A, we introduce the random-mode model in
Sec. II B, in which the couplings are generated as a
sum of rank-one outer products of random left and
right modes with component-specific strengths.
Unlike well-studied low-rank recurrent neural-net-
work models, we scale the rank with the network
size (Sec. II C). We show in Sec. II D that para-
metrizing these strengths provides control over the
singular-value spectrum of the coupling matrix.

(2) A new path-integral calculation of a specific four-
point function of network activity, originally defined
by Clark et al. (Ref. [39]), that captures features of
collective activity including its dimensionality. We
review these and other summary statistics in Sec. III.
In Secs. IVA–IV C, we describe the calculation,
based on fluctuations around the saddle point in a
path integral, and apply it to the random-mode
model. In Sec. IV D, we use the solution to study
how features of the coupling matrix control collec-
tive activity.

Additionally, in Sec. V, we analyze notable limiting
cases of the random-mode model. In Sec. VI, we study a
generalization of the model featuring heterogeneity among
single-neuron properties and contrast these effects with
those of low-rank structure in connectivity. Finally, in
Sec. VII, we incorporate structured overlaps between the
left and right modes into the model, demonstrating their
presence in the Drosophila connectome and showing how
they further shape collective dynamics.

II. RANDOM-MODE MODEL

A. Spectral structure of neural-circuit connectivity

Let J denote an N × N weighted, directed coupling
matrix among N neurons. Many theoretical studies have
examined single-neuron [10] and collective [39] properties
of activity in nonlinear recurrent neural networks with i.i.d.
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Jij. However, the coupling matrices of real-world networks,
including neural circuits, often exhibit approximate low-
rank structure that deviates dramatically from the i.i.d.
assumption. To illustrate this, we analyzed a central-brain
connectome of the fruit fly Drosophila melanogaster using
the singular-value decomposition (SVD), which decom-
poses any matrix as a sum of rank-one components, with
each component’s strength given by the corresponding
singular value [Figs. 1(a) and 1(b); details in Appendix B].
Specifically, the SVD decomposes J in the form

J ¼
XM
a¼1

SauavT
a ; ð1Þ

where, for a ¼ 1;…;M, Sa > 0 are the singular values; ua
and va are N-dimensional left and right singular vectors,
respectively; and M is the rank of J.
The ranked singular values of the Drosophila connec-

tome decay much more rapidly than those of an i.i.d. matrix
of the same size, which follow a universal distribution
independent of single-element statistics [Fig. 1(c);
similar analysis appears in Thibeault et al. (Ref. [23])].
We quantify this rapid decay using the participation
ratio (PR) of the squared singular-value spectrum,
PRS ¼ ðPM

a¼1 S
2
aÞ2=

P
M
a¼1 S

4
a. The connectome’s partici-

pation ratio is 0.18, substantially lower than the value 0.5
characteristic of i.i.d. matrices, confirming that this bio-
logical network exhibits a much more concentrated low-
rank structure than would arise from i.i.d. couplings.

B. Definition of the random-mode model

Both the singular-value spectrum and, as we will show
later, the overlaps of the left and right singular vectors of
the Drosophila connectome deviate from the predictions of
an i.i.d. coupling matrix. We therefore introduce the
random-mode model, a generative model for coupling

matrices that allows us to capture these properties within
a random-matrix ensemble (Fig. 2).
The random-mode model has the same mathematical

form as an SVD, but is a statistical generative process for J
rather than a matrix factorization. The model generates a
coupling matrix of the form

J ¼
XM
a¼1

DalarTa ; ð2Þ

where, for each a ¼ 1;…;M, Da > 0 are the component
strengths; ra and la are N-dimensional right and left
modes, respectively; and M is the number of components,
where rank ≤ minðN;MÞ. We now describe the properties
of these quantities. See Appendix A for a glossary of terms.

1. Component strengths

The component strengths Da are analogous to the
singular values Sa of J. We model these quantities
deterministically with the requirement that they are defined
for arbitrarily large M and that empirical averages
M−1PM

a¼1 fðDaÞ converge to limiting values, denoted
hfðDÞiD, as M → ∞.

2. Left and right modes

The left and right modes la and ra are analogous to the
left and right singular vectors ua and va of J. We assume
they are sampled i.i.d. across the neuron index i,

Pðfla; ragMa¼1Þ ¼
YN
i¼1

Pðflai; raigMa¼1Þ; ð3Þ

where Pðfla; ragMa¼1Þ is the joint distribution over the
2M mode components, which must be specified. We
assume that this distribution has the following moments
fixed:

FIG. 1. Analysis of Drosophila central-brain connectome. (a) Volume of fly brain for which reconstruction was performed (blue;
reproduced from Ref. [17]). (b) Normalized coupling matrix (elements summed within 10 × 10 blocks to aid visualization). (c) Singular-
value spectra of the normalized coupling matrix (red) and an i.i.d. random matrix (gray). The fly connectome exhibits a smooth spectrum
that decays quickly, corresponding to a reduced participation ratio. N ¼ 18028 neurons.
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hlai ¼ hrai ¼ 0; ð4Þ

hlalbi ¼ hrarbi ¼
1

N
δab: ð5Þ

This yields orthonormality of modes in expectation,

hlT
albi ¼ δab;

hrTarbi ¼ δab; ð6Þ

in analogy to singular vectors, for which orthonormality
holds exactly [40]. Individual mode components are
Oð1= ffiffiffiffi

N
p Þ. Note that we have not constrained second

moments that mix left and right mode components.

C. Rank scaling and comparison to low-rank recurrent
neural networks

A crucial modeling choice is how the number of modes
M scales relative to the network size N. The two main
possibilities are M ¼ OðNÞ or M ¼ Oð1Þ, corresponding
to extensive and intensive rank scaling, respectively. The
random-mode model is characterized by extensive rank
scaling, where both M and N approach infinity while
maintaining a fixed ratio,

α ¼ M
N

¼ Oð1Þ: ð7Þ

By choosing α to be small, or by choosing the spectrum of
ranked component strengths to decay rapidly, we can
construct connectivity that is low rank or well described
by a small number of rank-one components, compared to
the number of neurons.
The alternative approach of intensive rank scaling, where

M remains finite while N → ∞, leads to what has been

termed “low-rank recurrent neural networks” in the liter-
ature [42–45]. In some instances, the intensive-rank com-
ponent is added to an i.i.d. matrix modeling unstructured
“background” connectivity [42,43]. Note that, in this paper,
when we use “low rank” or “low dimensional,” we refer to
quantities that are small as a fraction of N, even if they are
extensive; this differs from some prior works (such as those
on low-rank recurrent neural networks) where these terms
refer to intensive quantities.
The distinction between extensive- and intensive-rank

scaling has important implications for specifying the dis-
tribution over the 2M mode components Pðfla; ragMa¼1Þ.
For finite M, one can directly specify this distribution. At
largeN, such a distribution encodes the relative geometry of
the left and right modes, since the inner products between
modes converge to (N times) the second moments of
Pðfla; ragMa¼1Þ, with negligible fluctuations. A common
choice is a 2M-dimensional multivariate Gaussian distribu-
tion. An important insight from prior work on the intensive-
rank case is that these overlaps are crucial for shaping the
dynamics and computations implemented by the network, as
overlaps between connectivity modes dictate how activity
modes interact [42–45].
Our goal is to go beyond the intensive-rank setup, which

produces correspondingly low-dimensional activity, to
model more sophisticated, higher-dimensional dynamics.
However, specifying the full distribution Pðfla; ragMa¼1Þ in
the random-mode model, where M → ∞, is more compli-
cated. First, it must be well defined for allM to allow taking
the limit. More fundamentally, we would like to use the
random-mode model to construct generative models that
capture certain essential spectral features of coupling
matrices, over which we have systematic control. Using
a joint Gaussian distribution would require specifying M2

parameters which, since M ¼ OðNÞ, is comparable to
defining the full N × N coupling matrix.

−20 0 20
0

5

FIG. 2. Schematic of the random-mode model. Upper: couplings J are generated as a sum of outer products, larTa , with component
strengthsDa. Lower: the two-point function C

ϕ
⋆ðτÞ and four-point functionΨϕ

⋆ðτÞ are calculated in terms of the statistics ofDa. The two-
point function depends only on the effective gain geff , while the four-point function depends on both geff and PRD, the effective
dimension of the connectivity determined by the Da distribution.
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For this reason, this paper specializes to a case where
Pðfla; ragMa¼1Þ factorizes across the mode index a,

Pðfla; ragMa¼1Þ ¼
YM
a¼1

Pðla; raÞ; ð8Þ

where Pðla; raÞ must be specified. Moreover, until
Sec. VII, we further specialize to the case where the left
and right modes are fully independent: Pðla; raÞ ¼
PðlaÞPðraÞ, with each marginal factor PðlaÞ or PðraÞ
being a univariate Gaussian with mean zero and variance
1=N [46]. In this case, all 2MN components specifying the
modes are i.i.d. with mean zero and variance 1=N; we refer
to this case as “i.i.d. modes.” In Sec. VII we use a
nonfactorized form of Pðla; raÞ to specify correlations
between la and ra, introducingM deterministic parameters
(in addition to the M component strengths) to specify the
left-right correlation for each a.

D. Relationship to singular-value decomposition

In the SVD, the left and right singular vectors are
orthonormal: uTaub ¼ vT

avb ¼ δab. In contrast, the left
and right modes are orthonormal only in expectation
[Eq. (6)]; once sampled, there are random Oð1= ffiffiffiffi

N
p Þ

overlaps,

lT
alb ¼ δab þOð1=

ffiffiffiffi
N

p
Þ;

rTarb ¼ δab þOð1=
ffiffiffiffi
N

p
Þ: ð9Þ

When the effective rank (defined below) is small and N is
large, the component strengths and modes approximate
singular values and vectors, respectively, since the effects
of the Oð1= ffiffiffiffi

N
p Þ deviations from orthonormality in the

sampled modes are negligible. Indeed, a well-known result
in high-dimensional geometry is that finite numbers of
random vectors with i.i.d. components approximate ortho-
normal bases at large N [47]. When the effective rank is not
small, overlaps between different modes produce a dis-
crepancy between the component strengthsDa and singular
values Sa. We now characterize this discrepancy
analytically.
We denote the nth moments and participation ratio of the

component-strength distribution by

rn ¼ hDniD; ð10Þ

PRD ¼ r22
r4

; ð11Þ

from which we define the “effective rank” of the couplings,

effective rank ¼ αPRD: ð12Þ

The effective rank is related to the participation ratio of
the squared singular-value spectrum at largeN [48] through

PRS ¼ αPRD

1þ 2αPRD : ð13Þ

Expanding in small αPRD, PRS ¼ αPRD þO(ðαPRDÞ2),
demonstrating that the component strengths are closely
related to the singular values in the low-dimensional
regime. While we express the analytic results in this paper
in terms of αPRD, the above equation can always be used to
translate between αPRD and PRS.
We further quantify this discrepancy in the case where

Da ¼ 1 for all a. Using methods from free probability
theory [49,50] (Appendix C; Fig. 8), the M singular values
are distributed over a range with boundaries

S� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 5α

2
−
α2

8
�
�
1þ α

8

�
3=2 ffiffiffiffiffiffi

8α
p

s
: ð14Þ

For small α, S� ¼ 1� ffiffiffiffiffiffi
2α

p þOðαÞ. Thus, while the
random-mode model spreads the nonzero singular values
over a range, this spread becomes negligible for small α.
More generally, the distributions of Da and Sa coincide for
small αPRD.
Having presented a generative model of connectivity, we

now present the network model that transforms this con-
nectivity into neural activity. We then define summary
statistics that characterize the structure of this activity,
allowing us to analyze its dependence on the connectivity.

III. NETWORK MODEL AND SUMMARY
STATISTICS

A. Recurrent neural-network model

We study a recurrent neural network of N neurons. Each
neuron i∈ f1;…; Ng is characterized by its preactivation
xiðtÞ and activation ϕiðtÞ ¼ ϕ(xiðtÞ), where ϕð·Þ is a scalar
nonlinearity; we use ϕðxÞ ¼ erfð ffiffiffi

π
p

x=2Þ, which is sig-
moid-shaped and has ϕ0ð0Þ ¼ 1 [51]. The network dynam-
ics are governed by

T½xi�ðtÞ ¼
XN
j¼1

JijϕjðtÞ; ð15aÞ

where T½x�ðtÞ ¼ ð1þ ∂tÞxðtÞ: ð15bÞ

Here, Jij denotes the synaptic coupling from neuron j to
neuron i, and T½·� is a causal functional that specifies the
single-neuron dynamics for which Eq. (15b) is a canonical
choice. We expect our results to be agnostic to the specific
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choice of T½·�. We next introduce correlation functions that
capture single-neuron and collective activity properties.

B. Two-point functions and duality of neuronal and
temporal covariances

Let a∈ fx;ϕg denote either preactivations or activations.
We define two complementary covariance functions, aver-
aging over either time or neurons,

Ca
ijðτÞ ¼ haiðtÞajðtþ τÞit; ð16Þ

Caðt1; t2Þ ¼
1

N

XN
i¼1

aiðt1Þaiðt2Þ: ð17Þ

These functions exhibit a form of duality: for any lag τ, the
matrix CaðτÞ with elements Ca

ijðτÞ indexed by ði; jÞ and the
matrix with elements Caðt1; t2 þ τÞ indexed by ðt1; t2Þ have
the same eigenvalue spectrum, up to scaling (to see this,
note that both matrices can be computed from a time-by-
neuron activity matrix A as ATA and AAT , respectively,
which have identical spectra) [52].
We also define the neuron-averaged response function,

describing the propagation of infinitesimal perturbations,

Saðt1; t2Þ ¼
1

N

XN
i¼1

δaiðt1Þ
δIiðt2Þ

����
I¼0

; ð18Þ

where IiðtÞ is a source term added to the right-hand side of
the network dynamics: T½xi�ðtÞ ¼

P
N
j¼1 JijϕjðtÞ þ IiðtÞ.

Finally, we define “stationarized” counterparts,

CaðτÞ ¼ hCaðt; t� τÞit; SaðτÞ ¼ hSaðt; t − τÞit: ð19Þ

C. Four-point functions, dimension of activity, and
principal-component timescales

In contrast to the above two-point functions, which
characterize single-neuron activity, four-point functions
describe features of collective activity. The same four-point
functions were used in Ref. [39]. Here, we motivate these
functions in more detail and express them in two ways via
the duality between neuronal and temporal covariances.
To motivate their definition, consider the dimension of

activity, which can be quantified as the participation ratio of
the spectrum of the equal-time covariance matrix Cað0Þ
[9,36,53–59]. Given the eigenvectors va

k and eigenvalues λ
a
k

for k ¼ 1;…; N, as one would compute as part of principal
components analysis, the participation ratio is

PRa ¼ 1

N
ðPN

k¼1 λ
a
kÞ2P

N
k¼1ðλakÞ2

: ð20Þ

To see why PRa provides a meaningful measure of
dimension, consider the case where D eigenvalues equal a

positive constant and the remaining eigenvalues are zero.
Then, PRa ¼ D=N. More generally, when the spectrum
exhibits a smooth decay rather than a hard cutoff, the
participation ratio identifies the characteristic decay scale
(divided by N) [55]. We compare the participation ratio to
alternative measures of effective dimensionality in
Appendix D. Without the normalization factor 1=N, this
quantity would vary between 1 and N; with normalization,
it varies between 1=N and 1.
In the limit N → ∞, this quantity could have three

qualitatively different behaviors:
(i) Subextensive dimensionality: PRa ¼ 0. The number

of dimensions filled by activity grows sublinearly
with N.

(ii) Nontrivial extensive dimensionality: 0 < PRa < 1.
The number of dimensions filled by activity grows
linearly with N and not all dimensions are filled
equally.

(iii) Trivial extensive dimensionality: PRa ¼ 1. All di-
mensions are filled equally by activity.

An advantageous property of the participation ratio is
that it can be expressed as the ratio of the squared trace and
Frobenius norm of Cað0Þ, both of which can be further
expressed in terms of matrix elements Ca

ijð0Þ,

PRa ¼ ðtrCað0ÞÞ2
kCað0Þk2F

¼ Cað0Þ2
1
N

P
N
i¼1 C

a
iið0Þ2 þ 1

N

P
i≠jC

a
ijð0Þ2

; ð21Þ

where Cað0Þ is given by Eq. (19). Assuming that diagonal
elements are uniform with negligible fluctuations, i.e.,
Ca
iið0Þ ¼ Cað0Þ for all i (as occurs, for example, under

i.i.d. connectivity [10]), this simplifies to

PRa ¼ Cað0Þ2
Cað0Þ2 þ ψað0; 0Þ ; ð22Þ

where, following Ref. [39], we define the four-point
function

ψaðτÞ ¼ 1

N

X
i≠j

Ca
ijðτ1ÞCa

ijðτ2Þ; ð23Þ

where τ ¼ ðτ1; τ2Þ. The three scaling behaviors of dimen-
sionality outlined above correspond in the limit N → ∞ to
ψað0; 0Þ → ∞, ψað0; 0Þ → const:, or ψað0; 0Þ → 0, respec-
tively. Since ψað0; 0Þ is given by a sum over OðN2Þ
squared cross-covariances times 1=N, its magnitude is N
times that of an individual squared cross-covariance. Both
i.i.d. matrices and the extensive-rank matrices generated by
the random-mode model lead to Oð1= ffiffiffiffi

N
p Þ cross-cova-

riances. Thus, ψað0; 0Þ → const: as N → ∞, leading to
nontrivial extensive dimensionality, 0 < PRa < 1.
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In this paper, we focus on a related function ΨaðτÞ that
includes the diagonal terms,

ΨaðτÞ ¼ 1

N

XN
i;j¼1

Ca
ijðτ1ÞCa

ijðτ2Þ: ð24Þ

As per the duality between neuronal and temporal cova-
riances, ΨaðτÞ can also be expressed in terms of the time-
by-time covariance Caðt1; t2Þ as

ΨaðτÞ ¼ NhCaðt1; t2ÞCaðt1 þ τ1; t2 þ τ2Þit1;t2 : ð25Þ
The neuron-by-neuron [Eq. (24)] and time-by-time
[Eq. (25)] definitions of ΨaðτÞ form the basis of the cavity
and path-integral calculations of this function, respectively.
Finally, the dimension of activity is given by

PRa ¼ Cað0Þ2
Ψað0; 0Þ ; ð26Þ

which, unlike Eq. (22), holds even when single-neuron
variances Ca

iið0Þ are nonuniform across neurons.
To study timescales of collective activity, we consider the

principal components of activity,

pa
kðtÞ ¼

1ffiffiffiffiffi
λak

p ðva
kÞTaðtÞ: ð27Þ

These principal components are the basis of much of
modern analysis of high-dimensional neural data [35–38].
They all have unit variance due to the 1=

ffiffiffiffiffi
λak

p
normaliza-

tion, but potentially very different characteristic timescales
[Fig. 9(a)]. To extract the timescales of just the leading
components, we weight them by the squares of their
corresponding eigenvalues. This gives

1

N

X
k

ðλakÞ2hpa
kðtÞpa

kðtþ τÞit ¼ Ψaðτ; 0Þ; ð28Þ

showing that ΨaðτÞ captures the temporal structure
of the leading principal components of activity
[Figs. 9(c) and 9(d)]. Note that weighting by the eigen-
values themselves, rather than their squares, gives
N−1P

k λ
a
khpa

kðtÞpa
kðtþ τÞit ¼ CaðτÞ, recovering single-

neuron information [Figs. 9(b) and 9(d)].

IV. PATH-INTEGRAL ANALYSIS OF THE
RANDOM-MODE MODEL

We aim to compute the summary statistics Caðt1; t2Þ,
Saðt1; t2Þ, andΨaðτÞ in the limit N → ∞ under the disorder
average. For a general functionF , we use the subscript⋆ to
denote such limiting values,

F⋆ ¼ lim
N→∞

hF iJ: ð29Þ

These values also correspond to the saddle point of a path
integral. The summary statistics we have defined are self-
averaging, meaning that the same values are obtained, up to
Oð1= ffiffiffiffi

N
p Þ fluctuations, when they are computed based on a

single realization of a large network. In this paper, we are
interested in statistically stationary states such that, for
N → ∞, the two-point functions depend on time
differences only and thus can be replaced by their statio-
narized counterparts [Eq. (19)], i.e., for all t,

Ca
⋆ðt; t� τÞ ¼ Ca

⋆ðτÞ; Sa⋆ðt; t − τÞ ¼ Sa⋆ðτÞ: ð30Þ

Calculating two-point functions is well-established “stan-
dard DMFT” [60–62]. As we review in Appendix E,
four-point functions were previously calculated for networks
with i.i.d. couplings using a two-site version of the cavity
method [39]. In this section, we introduce a new path-integral
approach to calculating four-point functions that allows for
the rapid solution of the i.i.d. model and generalizes to more
complicated models, including the random-mode model.

A. Relating Ψa to temporal covariance fluctuations

To cast the problem in the language of path integrals, we
turn to the time-by-time definition ofΨaðτÞ [Eq. (25)]. If the
time-by-time covarianceCaðt1; t2Þwere equal to its limiting
value, Ca

⋆ðt2 − t1Þ, we would have

Ψa
⋆ðτÞ¼? NhCa

⋆ðt2 − t1ÞCa
⋆ðt2 − t1 þ τ2 − τ1Þit1;t2 ¼ 0

since, for large time differences, Ca
⋆ðt2 − t1Þ decays expo-

nentially in jt2 − t1j [10]. However, based on the neuron-by-
neuron definition [Eq. (24)], Ψa

⋆ðτÞ is clearly a nonzero,
order-one quantity. This apparent contradiction is resolved
by considering theOð1= ffiffiffiffi

N
p Þ fluctuations around the limit-

ing value. The necessity of these fluctuations becomes clear
when considering the duality between neuronal and tem-
poral covariances: the presence of nonzero cross-covarian-
ces Ca

ijð0Þ indicates low-dimensional structure in the
system; equivalently, this structure manifests as the system
revisiting similar states over time, resulting in nonzero
temporal covariance Caðt1; t2Þ even for large time
differences jt2 − t1j ≫ 1 (Fig. 3). To capture this behavior,
we define fluctuations around the saddle point as

δCaðt1; t2Þ ¼ Caðt1; t2Þ − Ca
⋆ðt2 − t1Þ: ð31Þ

We express ΨaðτÞ purely in terms of these fluctuations as

ΨaðτÞ ¼ NhδCaðt1; t2ÞδCaðt1 þ τ1; t2 þ τ2Þit1;t2 ; ð32Þ

noting that terms involving Ca
⋆ðt2 − t1Þ vanish at large time

differences.Our task, therefore, is to compute the covariance
of the fluctuations, δCaðt1; t2Þ, captured asymptotically by

CONNECTIVITY STRUCTURE AND DYNAMICS OF NONLINEAR … PHYS. REV. X 15, 041019 (2025)

041019-7



hNδCaðt1; t2ÞδCaðt3; t4Þi⋆: ð33Þ

Then, to compute Ψa
⋆ðτÞ, we take in Eq. (33) the limits

t3 ¼ t1 þ τ1; jt2 − t1j → ∞;

t4 ¼ t2 þ τ2; τ1; τ2 ∼Oð1Þ: ð34Þ

B. Calculation of two- and four-point functions

Details of the calculation are given in Appendix F.
Briefly, we compute the covariance of fluctuations
[Eq. (33)] using the Martin-Siggia-Rose-Janssen–de
Dominicis (MSRJD) path-integral formalism [60–65].
For any fixed coupling matrix J, the path integral is

Z½J� ¼
Z

Dx
Z

Dx̂

exp

�
i
XN
i¼1

Z
dtx̂iðtÞ

�
T½xi�ðtÞ −

XN
j¼1

JijϕjðtÞ
��

:

ð35Þ

The auxiliary field x̂iðtÞ is conjugate to xiðtÞ and enforces
the network’s equations of motion [Eq. (15a)] through the
δ-function representation ð2πÞ−1 R dx̂eix̂x ¼ δðxÞ. Upon
introduction of source terms (that are not needed for our
purposes), this path integral serves as a generating func-
tional for correlation and response functions.
In principle, to compute Ψa

⋆ðτÞ in this framework, after
integrating out J from Z½J� to obtain a statistical field
theory governing two-point functions, we (1) find the
saddle-point solution for two-point functions by extremiz-
ing the action (i.e., standard DMFT); (2) compute the
time2-by-time2 Hessian matrix of the action describing
fluctuations around this saddle point; (3) invert this Hessian
and extract the sub-block corresponding to the covariance

of δCϕðt1; t2Þ [Eq. (33)]; and (4) apply the temporal limits
[Eq. (34)] to this sub-block to obtain Ψϕ

⋆ðτÞ.
Direct inversion of the time2-by-time2 Hessian is ana-

lytically intractable. However, we show that the temporal
limits commute with Hessian inversion, allowing us to
invert a low-dimensional frequency-dependent Hessian
instead (Appendix G). This readily yields the Fourier-space
function Ψϕ

⋆ðωÞ, where ω ¼ ðω1;ω2Þ. A few additional
steps yield Ψx

⋆ðωÞ. This approach allows for the efficient
calculation of two- and four-point functions for a given
model, requiring only a few lines of computation directly
from the action of the theory.
As a demonstration of this approach, we apply it to a

generalization of the i.i.d. model with correlated reciprocal
couplings, recovering results of Ref. [39] (Appendix H).

C. Solution of the random-mode model

Applied to the random-mode model, the self-consistent
equations that determine Cϕ

⋆ðt1; t2Þ are (Appendix I 1)

T½x�ðtÞ ¼ ηxðtÞ; ð36aÞ

ηx ∼ GPð0; αr2Cϕ
⋆Þ; ð36bÞ

Cϕ
⋆ðt1; t2Þ ¼ hϕðt1Þϕðt2Þi⋆; ð36cÞ

where Eq. (36b) indicates that ηxðtÞ is a Gaussian field with
zero mean and correlation function αr2C

ϕ
⋆ðt; t0Þ. These

equations are equivalent to those for an i.i.d. model
[Eqs. (E2)–(E4)] with coupling strength

geff ¼
ffiffiffiffiffiffiffi
αr2

p
: ð37Þ

The four-point function, our main object of interest, is
(Appendix I 2)

Ψϕ
⋆ ¼ 1þ 1

αPRD jg2effSϕ12j2
j1 − g2effS

ϕ
12j2

Cϕ
12; ð38Þ

where we have simplified notation by suppressing fre-
quency variables via the shorthand Cϕ

12 ¼ Cϕ
⋆ðω1ÞCϕ

⋆ðω2Þ
and Sϕ12 ¼ Sϕ⋆ðω1ÞSϕ⋆ðω2Þ. The same solution is obtained
through a more involved, but intuitive, two-site cavity
calculation (Appendix L; Fig. 11).
This solution for the random-mode model is one of our

main results, which we now spend some time interpreting.

D. Interpreting the solution

Our analysis reveals two features of connectivity that
characterize how it shapes activity, namely, the effective
coupling strength geff and the effective rank αPRD. The
former characterizes local structure (the magnitudes of
individual couplings), while the latter characterizes global
structure (the number of large connectivity components).

FIG. 3. Duality of neuron-by-neuron and time-by-time cova-
riances and its relation to the dimension of activity. Both plots are
based on the same simulation of a network of N ¼ 2500 neurons
with g ¼ 2.25 and i.i.d. couplings. The dimension can be
computed either by computing the statistics of the off diagonals
of the neuron-by-neuron covariance Cϕ

ijð0Þ (left) or by computing
the fluctuations away from the translation-invariant mean-field
form of the time-by-time covariance Cϕðt1; t2Þ (right).
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The above equations determiningCϕ
⋆ðτÞ andΨϕ

⋆ðτÞ immedi-
ately reveal that global structure in the connectivity is
invisible at the single-neuron level but shapes collective
activity. Specifically, the correlation function Cϕ

⋆ðτÞ is fully
determined by geff and is insensitive to the effective rank of
connectivity. This has important implications for neural data
analysis. In particular, analyses of single-neuron
activity properties may miss signatures of structured con-
nectivity that become apparent only when analyzing col-
lective-activity properties among simultaneously recorded
neurons.
What is the nature of the dependence of collective-activity

properties, such as the dimension of activity, on the effective
rank? To plot this relationship and validate the theory, we
simulated networks and computed the participation ratio from
the empirical equal-time covariance matrix of the activations
(see Appendix M for numerical details). We used a compo-
nent-strength spectrum Da ∝ expð−βDa=MÞ, which yields
PRD ¼ β−1D tanhðβDÞ. To attain a desired effective rank
αPRD < 1, we set α ¼ M=N ¼ 1 and solved for β; for
αPRD > 1, we fixed PRD ¼ 1 and increased α. We adjusted
geff by rescaling Da uniformly. We find excellent theory-
simulation agreement (Fig. 4). Figure 4(a) illustrates how the
dimension of activity, PRϕ, varies with αPRD for different
values of geff . Consistent with i.i.d.-coupling networks, PRϕ

increases monotonically with geff [39]. It also increases
monotonically with αPRD.
Taking αPRD → ∞ for fixed geff in Eq. (38) recovers the

formula for i.i.d. couplings [Eq. (E5)] of Ref. [39]. Indeed, in
this limit, J approaches an i.i.d. matrix. Correspondingly,
PRϕ approaches the activity dimension of a network with
i.i.d. couplings [Fig. 4(a) inset]. Comparing Eq. (E5)
to the corresponding i.i.d. formula (1=αPRD ¼ 0) and noting
that single-neuron properties are unaffected by αPRD, one

sees that any structure beyond i.i.d. connectivity (1=αPRD

finite) strictly decreases the dimension of activity.
The dimension of activity depends on Ψϕ

⋆ðτÞ at
τ ¼ ð0; 0Þ; we now examine the temporal profile of this
function. Figure 4(b) shows a normalized version of
Ψϕðτ; 0Þ, which is related to the correlation functions of
leading principal components, for various values of geff and
αPRD. The decay timescale of Ψϕ

⋆ðτ; 0Þ decreases with
increasing geff , approaching a limiting behavior at geff ≈ 10.
While αPRD affects the overall scale of this function and,
consequently, the dimension of activity, it has little effect on
the decay timescale and, hence, little effect on the timescales
of leading principal components [Fig. 4(b), inset]. Thus, the
effective rank primarily influences the dimension of activity
rather than the collective temporal structure.
A remarkable feature of these results is that only two

connectivity statistics, geff and αPRD, are sufficient to
determine the two- and four-point functions. Because of
the nonlinear, high-dimensional nature of the network, this
reduction is unexpected. This reduction breaks down when
structured mode overlaps are introduced (Sec. VII), in
which case, the formula for the four-point function requires
knowledge of the full joint distribution of component
strengths and overlaps.

V. LIMITING BEHAVIOR OF THE RANDOM-
MODE MODEL

Here, we examine the behavior of the random-mode
model in two limiting cases: as the system approaches the
transition to chaos from above (geff → 1þ) and in the limit
of low effective rank (αPRD → 0þ).
We first consider the limit geff → 1þ for arbitrary αPRD.

The relevant expansion parameter is 0 < geff − 1 ≪ 1. For

FIG. 4. Dimension of activity and collective timescales in the random-mode model. (a) Activity dimension PRϕ versus effective rank
αPRD for various coupling strengths geff . Thin dots, individual simulations; thick dots, means over 10 simulations; lines, theoretical
predictions. Inset: extended geff ¼ 6 case, showing convergence to i.i.d.-coupling behavior with growing α. (b) Normalized four-point

functionΨϕðτ; 0Þ≡ Ψϕðτ; 0Þ=Ψϕð0; 0Þ for various geff and αPRD. Inset: theory curves for all αPRD, demonstrating relative invariance of
collective timescales to the effective rank. Simulations use N ¼ 5000 neurons.
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networks with i.i.d. couplings with coupling strength g, it is
known that, as g → 1þ, Ψa

⋆;i:i:d:ðτÞ ∼ 1=ðg − 1Þ and
PRa

i:i:d: ∼ ðg − 1Þ3 [39]. For the random-mode model, to
leading order in 1=ðgeff − 1Þ,

Ψa
⋆ðτÞ ¼

�
1þ 1

αPRD

�
Ψa

⋆;i:i:d:ðτÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
∼1=ðgeff−1Þ

: ð39Þ

Consequently, to leading order in geff − 1, the dimension of
activity behaves as

PRa ¼
�
1þ 1

αPRD

�
−1

PRa
i:i:d:|fflffl{zfflffl}

∼ðgeff−1Þ3
: ð40Þ

Thus, as the network approaches the transition to chaos
from above, structured connectivity reduces the dimension
by a factor of ð1þ 1=αPRDÞ−1 compared to a network with
i.i.d. couplings. Taking the further limit of αPRD → 0þ
yields the simple relation

PRa ¼ αPRDPRa
i:i:d:: ð41Þ

The difference between αPRD and PRS is a higher-order
correction, so we also have PRa ¼ PRSPRa

i:i:d:; that is, in the
limits of both low effective rank and small effective
coupling strength, the dimension of activity is equal to
the dimension of the singular-value spectrum multiplied by
the dimension of activity for an i.i.d. network.
We next consider the limit αPRD → 0þ, for arbitrary geff.

In this limit, the component strengths closely approximate
the singular values. To leading order in αPRD,

PRa ¼ KaðgeffÞαPRD; ð42Þ

KaðgeffÞ ¼ Ca
⋆ð0Þ2

	Z
dω

���� g2effS
a
12

1 − g2effS
ϕ
12

����2Cϕ
12



−1
: ð43Þ

We verify this limiting behavior in simulations using
α ¼ 1 and a step function for the component strengths:
Da ¼ const: for a=N ≤ PRD and Da ¼ 0 otherwise. We
varied PRD, observing linear relationships with PRϕ and
PRx in the PRD → 0þ limit [Fig. 10(a)].
Focusing on KϕðgeffÞ, note that its expression [Eq. (43)]

resembles the formula for the dimension of activity in an
i.i.d. network with coupling strength geff [Eq. (E5)], but
includes an additional factor jg2effSϕ12j2 in the integral.
Numerical evaluation confirms that, as expected from
Eq. (41), KϕðgeffÞ → PRϕ

i:i:d: as geff → 1þ. As geff increases,
KϕðgeffÞ increases monotonically to approximately
1.53PRϕ

i:i:d: [Fig. 10(a), inset]. Thus, for networks with
low effective rank, PRϕ ∼ αPRDPRϕ

i:i:d: up to an order-one
fudge factor that becomes exactly one as geff → 1þ.

Finally, we consider the dependence of the full eigenvalue
spectrum λai of Cað0Þ on the spectrum of component
strengths Da. The latter leads to the former via a highly
nonlinear relationship. Indeed, using the same step-function
component-strength spectrum, the ranked eigenvalues λϕ

and λx of the covariance matrix decay smoothly rather than
exhibiting a cutoff [Fig. 10(b)]. Nevertheless, certain proper-
ties of these connectivity and activity spectra are linked. In
particular, in the limit αPRD → 0þ, αPRD and PRa exhibit a
linear relationship [with proportionality factor KaðgeffÞ],
implying that the ratios of the squared second moments
and fourth moments of these spectra are linked (despite, even
in this limit, the full spectra not coinciding).

VI. SINGLE-NEURON HETEROGENEITY

Cortical neurons display broad distributions of firing
rates [66]. This heterogeneity among neurons is analogous
to the heterogeneity of component strengths in the random-
mode model, but operates in the neuron basis rather than
the component basis. We now compare how low-dimen-
sional connectivity structure and heterogeneous neuronal
properties affect collective activity by extending our frame-
work to include single-neuron heterogeneity.
In a general formulation described in Appendix J, we

extend the nonlinearity of neuron i to ΦθiðxÞ, which
depends on a vector of neuron-specific parameters θi,
and solve for the resulting two- and four-point functions.
Here, to model firing-rate heterogeneity specifically, we
take θi to consist of a single gain parameter Gi, with
ΦθiðxÞ ¼ GiϕðxÞ. In analogy with the component-strength
distribution, we define

qn ¼ hGniG; ð44Þ

PRG ¼ q22
q4

: ð45Þ

The single-site picture that determines the two-point
functions is largely similar to Eq. (36c).
We analyze collective activity (four-point functions) for

(1) unnormalized activations ΦθiðtÞ ¼ Giϕ(xiðtÞ) and
(2) normalized activations ϕiðtÞ ¼ ϕ(xiðtÞ), the latter
being analogous to z-scored firing rates in neural record-
ings, where z scoring removes single-neuron heterogeneity
while preserving structure from cross-neuron and temporal
correlations. The four-point functions for the unnormalized
and normalized variables are found to be

ΨΦ
⋆ ¼

1
PRG þ 1

αPRD jg2effSϕ12j2
j1 − g2effS

ϕ
12j2

CΦ
12; ð46aÞ

Ψϕ
⋆ ¼ 1þ ð 1

PRG þ 1
αPRD − 1Þjg2effSϕ12j2

j1 − g2effS
ϕ
12j2

Cϕ
12; ð46bÞ
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respectively, where CΦ
12 ¼ q22C

ϕ
12 and we have updated the

definition of the effective coupling strength to
geff ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

αr2q2
p

. Equation (46b) demonstrates that reduc-
tions in effective rank, described by αPRD, and reductions
in the heterogeneity of gains, described by PRG, have
symmetric effects on the dimension of normalized activity,
with their combined effect captured by the harmonic mean
½ð1=αPRDÞ þ ð1=PRGÞ�−1 [67]. One might expect that
normalizing the activations before computing the dimen-
sion of activity would remove the effect of heterogeneous
gains on the dimension. This is not the case, however, since
neuronal gains affect the recurrent dynamics, not merely
the observed firing rates.
To further explore these effects, we compare the activity

dimensions for three sets of activations: unnormalized
activations and normalized activations (1 and 2 above)
and (3) normalized activations multiplied by an indepen-
dent set of “readout” gains, Φreadout

i ðtÞ ¼ Greadout
i ϕiðtÞ,

where the readout gains have the same distribution as
the actual gains. Case (3), whose four-point function is
given by Eq. (J18), considers variables with the same
distribution of firing rates as the unnormalized activations,
but where this heterogeneity is unrelated to the recurrent
dynamics.
To validate our theoretical predictions [Eqs. (46a), (46b),

and (J18)], we simulated networks with component
strengths and gains given by Da ∝ expð−βDa=MÞ and
Gi ∝ expð−βGi=NÞ (Fig. 5). The dimension of activity is
determined by the coupling strength geff , the effective

rank αPRD, and the participation ratio of the gain distri-
bution PRG. Increases in each of these parameters
lead to a higher activity dimension for all three sets of
activations.
Normalized activations exhibit the highest dimension.

While scaling normalized activations by heterogeneous
factors reduces dimension as expected, the magnitude of
this reduction depends on whether Gi or Greadout

i is used,
even when their distributions are identical. This occurs
because neurons with the largest gains preferentially
participate in the leading modes of the normalized
activations. Further scaling these already-dominant neu-
rons by their gains results in overrepresentation of these
neurons compared to using random gains. Thus, the
dimension of unnormalized activations is lowest, with
the dimension of random-readout activations falling
between those of the normalized and unnormalized
activations.
In experimental data analysis, it is common to normal-

ize single-neuron activities to control for differences in
firing rates across neurons. Our analysis implies that
such normalization may not eliminate the effects
of single-neuron heterogeneity on collective-activity
properties. The persistence of these effects through
normalization provides an experimental signature for
distinguishing between heterogeneity that affects recur-
rent dynamics and heterogeneity that affects only the
observed firing rates, for example, in a circuit that is not
recurrent.

FIG. 5. Effect of single-neuron heterogeneity on dimension of activity in the random-mode model. (a) Dimension of normalized
activity PRϕ versus participation ratio of gain distribution PRG for various coupling strengths geff and effective ranks αPRD. Thin dots,
individual simulations; thick dots, means over ten simulations; lines, theoretical predictions. (b) Fractional reduction in dimension for
weighted activations relative to PRϕ. Blue, Giϕi; purple, Greadout

i ϕi. geff ¼ 10. Thick dots, means over ten simulations, averaging before
taking the ratio; lines, theoretical predictions. All simulations use N ¼ 5000 neurons.
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VII. MODE OVERLAPS

Thus far, we have assumed i.i.d. modes, with the
factorization Pðla; raÞ ¼ PðlaÞPðraÞ implying that left-
right overlaps lT

ara are random and Oð1= ffiffiffiffi
N

p Þ. The same
holds for lT

arb with a ≠ b due to the more fundamental
assumption that Pðfla; ragMa¼1Þ factorizes across a.
However, computations in biological circuits require struc-
tured interactions between modes, suggesting stronger,
nonrandom overlaps between left and right modes. To test
this, we return to the Drosophila connectome and compute
the overlap matrix between left and right singular vectors,
Oab ¼ uTavb [Fig. 6(a)]. Contrary to the small, unstructured
overlaps expected under the i.i.d. assumption, the con-
nectome exhibits large, structured overlaps, particularly
along the diagonal [Fig. 6(b)].
Motivated by the presence of these large diagonal overlaps,

we extend the random-mode model to include correlations
between corresponding left and right modes. Specifically, we
take Pðla; raÞ to be a zero-mean bivariate Gaussian with
marginal variance 1=N and covariance ρa=N, where ρa is the
correlation between the ath mode pair. Both Da and ρa are
treated deterministically, and we assume that M−1P

a
fðDa; ρaÞ converges to a limiting value hfðD; ρÞiD;ρ as
N → ∞. In this setting, lT

ara ¼ ρa, with negligible
Oð1= ffiffiffiffi

N
p Þ fluctuations around this structured overlap, while

lT
arb for a ≠ b remains unstructured and Oð1= ffiffiffiffi

N
p Þ.

This additional structure produces eigenvalue spectra

resembling that of the connectome, including large real
outliers [Fig. 6(c)] [68].
This purely diagonal overlap structure, however, can

generate only real eigenvalue outliers. The presence of
complex outliers in the connectome, together with the full
overlap matrix itself [Fig. 6(a)], implies the presence of
richer correlations. Capturing such features would require
relaxing the full factorization of Pðfla; ragÞ across a while
retaining OðMÞ parameter scaling—for example, via
blockwise factorization or Markovian correlations across
a. We leave such generalizations for future work. We also
note that, by setting ρa ¼ 1 for all a, the model becomes a
Hopfield network storing an extensive set of Gaussian
patterns. In such networks, each mode can be “condensed”
[Oð1Þ overlap with activity] or “uncondensed” [Oð1= ffiffiffiffi

N
p Þ

overlap with activity]. Our analysis assumes no condensed
modes, but sufficiently strong positive overlaps break this
assumption. The Gaussian case, however, is unable to
generate multiple multistable attractors as in a memory
system [44]. Note that the form of the single-element
density is relevant for the condensed patterns, but not for
the uncondensed patterns. Allowing for condensed patterns
within our analysis would require specifying this density.
See Ref. [69] for a DMFT analysis of generalized Hopfield
dynamics in which these ideas are implemented.
In Appendix K, we compute the two- and four-point

functions. As in previous cases, the dynamics reduce to
single-site processes,

FIG. 6. Right-left mode overlaps and eigenvalue spectra of the fly-brain connectome. (a) Overlap matrix between right and left
singular vectors of the connectome. First 500 modes are shown. (b) First 3000 diagonal elements of the overlap matrix from (a).
Horizontal lines indicate an approximate cutoff for Oð1= ffiffiffiffi

N
p Þ random overlaps. (c) Eigenvalue spectra of various connectome-based

matrices. Top: actual hemibrain spectrum, exhibiting large outliers along the real axis. Middle: eigenvalues from a realization of the
random-mode model (RMM), using singular values from the connectome as component strengths Da, resulting in a circularly
symmetric spectrum. Bottom: random-mode model realization with right-left mode overlaps incorporated, where overlaps are given by
the inner products of left and right singular vectors from the fly connectome SVD. Data from Scheffer et al. [17], N ¼ 18028 neurons.
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T½x�ðtÞ ¼ ηxðtÞ þ
Z

t
dt0R⋆ðt; t0Þϕðt0Þ; ð47aÞ

ηx ∼ GPð0; Q⋆Þ; ð47bÞ

Cϕ
⋆ðt1; t2Þ ¼ hϕðt1Þϕðt2Þi⋆; ð47cÞ

Sϕ⋆ðt1; t2Þ ¼
�
δϕðt1Þ
δIðt2Þ

�
⋆
: ð47dÞ

Assuming temporal stationarity, the kernels are given in
Fourier space by

Q⋆ðωÞ ¼ α

�
D2

j1 −DρSϕ⋆ðωÞj2
�

D;ρ

Cϕ
⋆ðωÞ; ð48Þ

R⋆ðωÞ ¼ α

�
Dρ

1 −DρSϕ⋆ðωÞ

�
D;ρ

: ð49Þ

Unlike the i.i.d. modes case, the single-site picture is not
equivalent to that of an i.i.d. network for some geff .
To better understand the self-coupling kernel R⋆ðωÞ, we

expand in powers of ρ. The coefficients encode connec-
tivity motifs of increasing orders,

R⋆ðωÞ ¼ hJiii⋆ þ hNJijJjii⋆ Sϕ⋆ðωÞ þ � � � ; where

hJiii⋆ ¼ αhDρiD;ρ; hNJijJjii⋆ ¼ αhðDρÞ2iD;ρ: ð50Þ

Here, hJiii⋆ corresponds to deterministic self-couplings or
autapses. To avoid such biologically implausibleOð1Þ self-
connections, we set hDρiD;ρ ¼ 0, yielding Jii ¼ Oð1= ffiffiffiffi

N
p Þ

[70]. The second term in the expansion (note that i ≠ j)
reflects reciprocal correlations in an otherwise i.i.d. net-
work (Appendix H). Nonzero higher-order terms indicate

that this structure cannot be reduced to either of these
simpler cases. Notably, if both hNJiii⋆ and hNJijJjii⋆
vanish, all higher-order terms vanish as well, making
reciprocal covariance necessary and sufficient for a nonzero
self-coupling kernel in the single-site description.
The four-point function, meanwhile, is given by

Ψϕ
⋆ ¼ V − 1þ fð1þX12Þð1þX�

21
Þ

1−W� þ H:c:g
j1 − Uj2 Cϕ

12;

U ¼ αhD2Σ1Σ2iD;ρ; V ¼ αhD4jΣ1Σ2j2iD;ρ;

W ¼ αhD2ρ2Σ�
1Σ2iD;ρ; X12 ¼ αhD3ρΣ1jΣ2j2iD;ρ;

Σk ¼
Sϕk

1 −DρSϕk
ðk ¼ 1; 2Þ: ð51Þ

We validate this theory using α ¼ 1 and
Da ∝ expð−βDa=NÞ, as before. For overlaps, we use a
sigmoidal spectrum for ρa qualitatively inspired by
Fig. 6(b), with multiplicative prefactor γρ and other
parameters chosen such that hDρiD;ρ ¼ 0 (Appendix K 3).
Across values of geff and PRD, sufficiently strong overlaps,
of either sign, reduce the dimension of activity (Fig. 7). The
maximum dimension occurs for γρ < 0, where dynamics
most strongly suppress activity aligned with dominant
connectivity modes. This effect weakens as geff increases.
In summary, our analysis reveals how connectivity

structure shapes collective activity and its dimensionality.
When mode overlaps are unstructured, connectivity struc-
ture reduces to two parameters: the effective rank αPRD and
effective coupling strength geff . Structured left-right mode
overlaps break this simplification: Collective dynamics
then depend on the full joint distribution of component
strengths and overlaps, providing an additional mechanism
for controlling activity dimensionality.

FIG. 7. Effect of right-left mode correlations on dimension of activity in the random-mode model. Dimension of activity PRϕ versus
correlation parameter γρ in the ðD; ρÞ joint distribution, for various coupling strengths geff and effective ranks αPRD. Thin dots,
individual simulations; thick dots, means over ten simulations; lines, theoretical predictions. All simulations use N ¼ 5000 neurons.
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VIII. DISCUSSION

A. Motifs versus global structure

Neuronal connectivity is often described using statistics
of motifs: local patterns like chains or cycles among small
groups of neurons [22,73–75]. These can be estimated from
partial observations of a weight matrix which, until
recently, set the limits of experimental measurement.
Advances in whole-brain connectome reconstruction now
allow access to global connectivity, including spectral
features. Our parametrization of coupling matrices repre-
sents this global structure, with control over both the
spectrum and mode overlaps. These spectral features
determine how activity modes interact dynamically and
thus may more directly dictate neural computations com-
pared to motifs.
That said, in some studies the primary goal is to capture

motifs or graph-theoretic features (e.g., degree distribu-
tions) over which the random-mode model does not
provide control (although some of these features have
spectral signatures that could be incorporated). When such
features are the focus, other connectivity models are better
suited—for instance, maximum-entropy random graph
models constrained by fixed structural features (e.g., the
configuration model for matching degree distributions).

B. Linking connectivity and activity datasets

The random-mode model, together with its dynamical
theory, could aid in the interpretation of large-scale neural
activity recordings in the context of anatomical connectiv-
ity, such as in Drosophila, where both the connectome and
whole-brain activity data are available [76]. In the current
work, we used this connectome to characterize the spectral
structure of an actual large neural circuit, stopping short of
considering the activity that it generates. Future work could
progressively incorporate richer connectome constraints
into the model to identify which features most strongly
shape collective activity. One possible sequence would be
to add the spectrum of component strengths, then diagonal
mode overlaps, and finally off-diagonal overlaps, assessing
at each step how much the correspondence between
modeled and observed activity improves. This is similar
to approaches in statistical physics that aim to recover
higher-order correlations by constraining lower-order sta-
tistics [38,77,78].

C. Learning

Learning alters collective dynamics by modifying con-
nectivity, the core principle of machine learning. Our
analysis focuses on structured but untrained networks that
produce chaotic activity. Nevertheless, the extensive low-
rank connectivity structures we study provide a starting
point for understanding trained networks.
Large networks trained on simple tasks often show

intensive low-rank modifications to their initial couplings,

resulting in a finite number of task-relevant eigen-
values [27,43]. Existing theoretical tools can already
describe such systems by taking the trained weights,
performing a low-rank decomposition, modeling mode
overlaps statistically, and studying the resulting low-rank
DMFT [45]. By contrast, empirical studies of large net-
works trained on real-world tasks suggest the emergence of
extensive low-rank structure, with smooth spectral profiles
with many significant components [28]. This structure
resembles that modeled by the random-mode model.
Whether mode overlaps extracted from such networks
can be incorporated into the random-mode model frame-
work, and thereby yield a working theory for the extensive-
rank case, is an open question.
A more ambitious direction is to develop a DMFT for

networks whose weights are learned from data, rather than
first training networks and then retrofitting a statistical
model. Such a theory would describe not only how data
shape the weights, as addressed by classical works [79], but
also how data interact with recurrent network dynamics.
The path-integral formalism is well suited to this, as it
allows derivation of DMFTequations for coupling matrices
drawn from a Gibbs ensemble with an energy function
given by a task loss. While this approach has been applied
to low-dimensional tasks [80], applying it to high-dimen-
sional tasks could yield a theory of how such tasks generate
extensive-rank weights that, in turn, produce extensive-
dimensional activity whose single-neuron and collective
properties the theory would describe.
Another route to extensive-rank structure is via networks

that perform many tasks, which could be modeled, for
example, by representing mode overlaps through blockwise
factorization of Pðfla; ragMa¼1Þ across a. This “multitask”
scenario is increasingly relevant in both neuroscience and
machine learning [81,82].
Even in standard recurrent neural network training, ini-

tializing couplings with low-rank structure could improve
procedures such as FORCE learning, which rely on sup-
pressing chaos [12,13]. Lower-dimensional attractors may be
easier to control, potentially leading to faster convergence.

D. Modeling functional consequences of single-neuron
heterogeneity

A central question in neuroscience is how neuronal
diversity shapes collective dynamics and computation
[83]. Appendix J presents a general framework that assigns
each neuron a parameter vector θ and enables the study of
how different forms of heterogeneity affect properties such
as dimensionality. Section VI focuses on gain heterogeneity
to model firing-rate diversity, but this framework could also
incorporate more intricate cell-specific features, such as
electrophysiological characteristics [84], linking single-
neuron heterogeneity to functional consequences for pop-
ulation activity.
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E. Transient dynamics and excitation-inhibition

Our analysis has focused on stationary states with
translation-invariant temporal correlations. Many neural
computations, however, rely on transient dynamics that
break stationarity and depend on absolute time. Extending
the DMFT accordingly is numerically tractable for two-
point functions but would become unwieldy for four-point
functions, Ψa

⋆ðt1; t2; t3; t4Þ. Representing and manipulating
such a large object may require approximations or low-rank
decomposition.
One notable transient phenomenon is transient amplifi-

cation, linked to non-normal coupling matrices that natu-
rally arise from excitatory-inhibitory segregation (Dale’s
law) [85,86]. Although the random-mode model does not
enforce Dale’s law, the resulting matrices are nevertheless
non-normal and may exhibit transient amplification; such
effects may be amplified through structured off-diagonal
overlaps between left and right modes. Non-normality also
decouples the highest-variance dimensions from the slow-
est modes. Relatedly, extending the random-mode model to
respect Dale’s law and incorporating a nonsaturating
ϕðxÞ—achieving stability via excitation-inhibition balance
rather than saturation [87,88]—could enable more direct
comparisons to both connectivity and activity data.

F. Random basis property

The random-mode model assumes that the 2M mode
components associated with each neuron are sampled i.i.d.
for each neuron [Eq. (3)]. This leads to neuronal permu-
tation symmetry of the distribution over J. Furthermore,
when the marginal distributions over left and right mode
components are isotropic Gaussians, as we have assumed,
the embedding into neuronal space is, by definition,
random and Gaussian. This “random basis property”
may underlie heterogeneous tuning observed in neural
circuits [29], but in our case it imposes modeling limi-
tations: While the random-mode model has configurable
spectral properties, it precludes configuration of spatial or
anatomical properties.
This limitation could be addressed by conditioning the

distribution over the 2M mode components on neuron-local
properties such as brain region or spatial location, provided
the number of effectively distinct possibilities is intensive.
This would yield a regionally or spatially embedded
random-mode model, apt for connectome studies.
Because we assume zero-mean mode components

[Eq. (4)], hJiji ¼ 0 for i ≠ j. Thus, the low-rank structure
is not inherited from the expected weight matrix. This
differs from the mechanism described by Thibeault et al.
[23], who analyze cases where low-rank structure arises
because hJi is low rank, with the random part treated as
noise. By Weyl’s inequality, the singular values of J differ
from those of hJi by, at most, the spectral norm of the noise.
This mechanism is fundamentally different from the
random-mode model’s zero-mean, randomly embedded

structure. Which of these mechanisms is more prevalent
in real-world networks is an open question.

G. Alternative generative models

Tiberi et al. [89] proposed a generative model for
coupling matrices that parametrizes the eigendecomposi-
tion of J rather than its SVD. Their formulation does not
capture relationships between eigenvalues and eigenvec-
tors. Our SVD-like approach allows simultaneous control
over component strengths and their corresponding mode
overlaps. Whereas Tiberi et al. [89] studied noise-driven
linear networks within a random-matrix-theory framework,
our DMFT formulation applies to nonlinear dynamics.
Connectivity parametrizations resembling the random-

mode model have been used to study the correspondence
between spiking and rate-based recurrent neural networks
[90] and to expedite training spiking networks [91].

IX. CONCLUSION

The random-mode model and associated analytical
techniques provide tools for exploring the relationship
between connectivity and collective dynamics. Our para-
metrization of connectivity is a middle ground between
intensive-rank models and i.i.d. random networks. Building
on this framework stands to further bridge neuronal
connectivity, activity, and function.
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APPENDIX A: GLOSSARY OF TERMS

Number of neurons (N): Total number of neurons in the
network.

Number of modes (M): Number of components in the
random-mode model.

(Effective) coupling strength (g, geff ): Standard deviation
of the couplings times

ffiffiffiffi
N

p
in the i.i.d. connectivity

model, random-mode model [Eq. (37)], or variants
thereof [e.g., see just below Eqs. (46a) and (46b)].

Random-mode model: Network connectivity model:
J ¼ P

M
a¼1DalarTa [Eq. (2)].

Connectivity component (larTa ): Outer product of output
and right modes.
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Right mode (ra): Neuronal pattern in the ath component
onto which activity patterns are projected.

Left mode (la): Neuronal pattern in the ath component
along which the projected activity pattern is expanded.

Component strength (Da): Scaling factor for the ath
component.

Ratio of modes to neurons (α): Given by α ¼ M=N
[Eq. (7)].

Participation ratio of component strengths (PRD): Given
by PRD ¼ r22=r4 [Eq. (11)], where rn ¼ hDniD
[Eq. (10)].

Effective rank (αPRD): Connectivity dimensionality
measure [Eq. (12)].

Two-point function: Correlation function given by
Cϕðt1; t2Þ ¼ ð1=NÞPN

i¼1 ϕiðt1Þϕiðt2Þ [Eq. (17)].
Four-point function: Higher-order correlation function
given by Ψϕðτ1; τ2Þ ¼ ð1=NÞPN

i;j¼1 C
ϕ
ijðτ1ÞCϕ

ijðτ2Þ
[Eq. (24)]. See also time-by-time definition [Eq. (25)].

APPENDIX B: PREPROCESSING OF FLY
HEMIBRAIN CONNECTOME

We use the dataset from Scheffer et al. [17], in which
synaptic counts are reported for each connection. These
counts determine the magnitudes of the coupling matrix
elements. Neurotransmitter probabilities for each neuron
are obtained from a machine-learning analysis of the
electron microscopy data [92]. Each neuron is assigned
its most probable neurotransmitter, which is then mapped to
a synaptic sign (excitatory or inhibitory) according to
Table I [93,94].
Synaptic counts do not directly correspond to effective

synaptic strengths, so it is reasonable to choose “fudge
factors” to relate the two. Our primary goal in choosing
these factors is to standardize the spectrum of the coupling
matrix so that it is roughly confined to the unit disk. At the
same time, we want to preserve key structural features of
the original connectivity.
Specifically, the preprocessing is designed to preserve:
(i) the sparsity pattern (for which the connections are

zero versus nonzero);
(ii) the sign of each connection (excitatory versus

inhibitory);

(iii) approximately, the relative magnitudes of same-sign
inputs to each neuron; and

(iv) approximately, the relative magnitudes of same-sign
outputs from each neuron.

The last two properties are preserved only approximately
because they are enforced simultaneously by the iterative
normalization procedure described below.
We normalize the coupling matrix using an iterative

scaling method analogous to the Sinkhorn-Knopp algo-
rithm. First, for each row, we rescale the positive elements
by a row-specific factor so that their L2 norm equals 1=

ffiffiffi
2

p
.

We then rescale the negative elements, using a separate
factor, so that their L2 norm also equals 1=

ffiffiffi
2

p
. This yields

rows with a total L2 norm of 1 and balanced excitatory and
inhibitory contributions. A small number of neurons with
only excitatory or only inhibitory inputs retain an L2 norm
of 1=

ffiffiffi
2

p
.

Next, we apply the same rescaling procedure to each
column, which disrupts the previous row normalization. We
alternate the row and column scaling steps until conver-
gence. The result can be interpreted as the projection of the
original matrix onto the set of matrices that are properly
normalized along both rows and columns, while keeping
the same nonzero elements and signs.
This iterative normalization provides a principled way to

choose the required scale factors while achieving our goal
of a standardized spectrum.

APPENDIX C: FREE PROBABILITY
CALCULATION

We wish to determine the limiting density of the singular
values of

J ¼ LRT; ðC1Þ

where L and R are independent N ×M random matrices
with α ¼ M=N and entries of variance 1=N. Equivalently,
we can compute the eigenvalues of

JTJ ¼ RLTLRT ðC2Þ

and then take the square root to obtain the singular values.
These eigenvalues are the same as those of

LTLRTR; ðC3Þ

which is the product of two independent Wishart matrices,

LTLRTR ¼ WLWR: ðC4Þ

The Stieltjes transform GðzÞ of a spectral density ρðλÞ is
defined as

TABLE I. Mapping of neurotransmitters to synaptic signs.

Neurotransmitter Synaptic sign

GABA −1 (Inhibitory)
Acetylcholine þ1 (Excitatory)
Glutamate −1 (Inhibitory)
Serotonin Ignored
Octopamine Ignored
Dopamine Ignored
Neither Ignored
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GðzÞ ¼
Z

∞

−∞

dλρðλÞ
z − λ

; z∈CnR; ðC5Þ

ρðλÞ ¼ −
1

π
lim
ϵ→0þ

ImGðλþ iϵÞ: ðC6Þ

In a two-dimensional electrostatics analogy, the real and
imaginary parts of GðzÞ correspond to the Cartesian
components of the electric field generated by a line charge
density ρðλÞ on the real axis. The inversion formula is then
analogous to Gauss’s law, relating the discontinuity of the
normal field component to the local charge density.
The moment-generating function and S transform are

defined by

MðzÞ ¼ zGðzÞ − 1; ðC7Þ

SðzÞ ¼ 1þ z
zM−1ðzÞ ; ðC8Þ

where M−1ðzÞ is the functional inverse of MðzÞ. For a
Marchenko-Pastur distributed Wishart matrix W with
aspect ratio α,

SðzÞ ¼ 1

1þ αz
: ðC9Þ

A key fact in free probability is that the S transforms of free
variables multiply. Thus, for W1W2, the S transform is

SðzÞ ¼ 1

ð1þ αzÞ2 : ðC10Þ

From the definition of the S transform, the inverse-moment-
generating function is

M−1ðzÞ ¼ 1þ z
zSðzÞ ¼

ð1þ zÞð1þ αzÞ2
z

: ðC11Þ

Therefore, MðzÞ satisfies

z ¼ ½1þMðzÞ�½1þ αMðzÞ�2
MðzÞ : ðC12Þ

Using MðzÞ ¼ zGðzÞ − 1, we obtain a cubic equation for
GðzÞ,

− α2z3GðzÞ3 þ 2z2ðα2 − αÞGðzÞ2
þ zðzþ 2α − α2 − 1ÞGðzÞ − z ¼ 0: ðC13Þ

In principle, this can be solved using the cubic formula, but
the explicit form is cumbersome. For the support bounda-
ries of ρðλÞ, we need only the points where ImGðzÞ
changes from zero to nonzero. This occurs when the
discriminant of the cubic vanishes. The discriminant is

Δ ¼ α2λ7½4λ2 þ ðα2 − 20α − 8Þλ
þ ð−4α3 þ 12α2 − 12αþ 4Þ�; ðC14Þ

where we replaced z with λ to indicate restriction to the real
axis. Setting Δ ¼ 0 gives λ ¼ 0 or the nontrivial quadratic
equation

4λ2 þ ðα2 − 20α − 8Þλþ ð−4α3 þ 12α2 − 12αþ 4Þ ¼ 0:

ðC15Þ

The roots of this quadratic are

λ� ¼ 1þ 5α

2
−
α2

8
�
�
1þ α

8

�
3=2 ffiffiffiffiffiffi

8α
p

: ðC16Þ

The singular values correspond to the square roots of the
eigenvalues, given by Eq. (14). We confirm this formula
numerically in Fig. 8.

APPENDIX D: ALTERNATIVE MEASURES OF
EFFECTIVE DIMENSIONALITY

Alternative measures of effective dimensionality, which
could be applied to both connectivity and activity in place of
the participation ratio, have been proposed in the literature.
Roy andVetterli [95] define effective rank as the exponential
of the entropy of a categorical probability distribution
obtained by normalizing the eigenvalues to sum to 1, i.e.,
pi ¼ λi=

P
N
j¼1 λj. Written in terms of this distribution, the

participation ratio is PR ¼ ðPN
i¼1 p

2
i Þ−1, while the expo-

nentiated entropy is expðHÞ ¼ exp ð−P
N
i¼1 pi logpiÞ. By

Jensen’s inequality, PR ≤ expðHÞ. Exact equality holds in
certain cases, includingwhen exactlyK ≤ N eigenvalues are
equal and the rest are zero, yielding PR ¼ expðHÞ ¼ K.

0.0 0.5 1.0 1.5 2.0

free
probability

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

FIG. 8. Distribution of singular values in the random-mode model. Histograms show singular values of LDRT withDa ¼ 1 for various
α. For α ≪ 1, the singular values concentrate at 1. Vertical lines, prediction of Eq. (14). N ¼ 5000.
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Furthermore, for smoothly decaying spectra as discussed
above [for which pi ¼ fði=NwÞ=PN

j¼1 fðj=NwÞ, with
w ≪ 1], both measures have PR ¼ c1Nw and expðHÞ ¼
c2 Nw, where c1 and c2 areN- andw-independent constants
depending on the specific form of f. Thus, while the
measures differ in detail, they provide similar character-
izations of effective dimensionality. This entropy-based
definition has been used in neuroscience applications, for
example, in Ref. [96] to analyze transient amplification in
neural networks. Both measures capture the number of
dominant modes in the system. Thibeault et al. (Ref. [23])
call (a metric closely related to) the participation ratio-based
metric the “srank” (the difference being whether the maxi-
mum eigenvalue or sum over all eigenvalues is used as a
normalizing factor) and call the entropylike metric
the “erank.”

APPENDIX E: REVIEW: CALCULATING TWO-
AND FOUR-POINT FUNCTIONS FOR I.I.D.

COUPLINGS

Wenow review how to compute these two- and four-point
functions in a classic network model with i.i.d. couplings J.
The first- and second-order coupling statistics are

hJiji ¼ 0; hJ2iji ¼
g2

N
: ðE1Þ

The magnitude of a typical coupling is g=
ffiffiffiffi
N

p
. We refer to g

as the coupling strength. For the canonical dynamics
T½x�ðtÞ ¼ ð1þ ∂tÞxðtÞ, the network is quiescent for
g < 1 and chaotic for g > 1, with a sharp phase transition
as N → ∞. In this paper, we assume that the network is
nonquiescent.
The two-point function Ca

⋆ðt1; t2Þ can be computed
through a single-site picture that describes the dynamics
of a typical neuron embedded in the rest of the network,

with preactivation xðtÞ and activation ϕðtÞ. The single-site
dynamics are given by

T½x�ðtÞ ¼ ηxðtÞ; ðE2Þ

where ηxðtÞ is a Gaussian field with mean zero and
covariance g2Cϕ

⋆ðt1; t2Þ. We denote this by

ηx ∼ GPð0; g2Cϕ
⋆Þ: ðE3Þ

Cϕ
⋆ðt1; t2Þ is determined self-consistently by enforcing

Cϕ
⋆ðt1; t2Þ ¼ hϕðt1Þϕðt2Þi⋆; ðE4Þ

where h� � �i⋆ denotes an average within this single-site
process, i.e., with respect to the Gaussian distribution of
ηxðtÞ. Once Cϕ

⋆ðt1; t2Þ has been determined, Cx
⋆ðt1; t2Þ

follows easily. This single-site problem can be derived
through either a single-site cavity calculation (see
Ref. [97]) or a saddle-point condition in a path integral
(see Refs. [60,61]). For the i.i.d. couplings considered here,
there is a simpler heuristic derivation: In the neuronal inputP

N
j¼1 JijϕjðtÞ, the correlations between the couplings Jij

and dynamic variables ϕjðtÞ can be safely neglected to
leading order in 1=N, yielding both Gaussianity of ηxðtÞ by
the central limit theorem and the second-order statistics
of Eq. (E3).
Clark et al. [39] first computed Ψa

⋆ðτÞ using a dynamic,
two-site version of the cavity method, based on the neuron-
by-neuron definition [Eq. (24)]. This method finds ψa

⋆ðτÞ,
the off-diagonal contribution to Ψa

⋆ðτÞ, noting that the on-
diagonal contribution is simply Ca

⋆ðτ1ÞCa
⋆ðτ2Þ. A cavity is

first created by removing two neurons from the network
and allowing the rest of the network, the reservoir, to
generate dynamic activity. The cavity neurons are then
introduced, and their effect on the reservoir is treated

FIG. 9. Relationship between principal component timescales and two- and four-point correlation functions. (a) Example activity
traces of principal components pϕ

k ðtÞ. (b) Empirical correlation functions for each principal component (PC), weighted by their
eigenvalues. (c) Same as (b) but weighted by the squared eigenvalue. (d) Averages over curves in (b) and (c), with comparisons to Cϕ

⋆ðτÞ
and Ψϕ

⋆ðτ; 0Þ. Dots, simulation results; lines, theoretical predictions. All panels describe the same network of N ¼ 4000 neurons with
i.i.d. couplings with variance g2=N with coupling strength g ¼ 6.
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perturbatively. This yields a pair of coupled mean-field
equations for the cavity units, generalizing the single-site
picture discussed above to a two-site picture. Finally, self-
consistency conditions are constructed by recognizing that
the cavity pair is statistically equivalent to any reservoir
pair. This calculation results in expressions for the four-
point function in Fourier space, given by

Ψϕ
⋆ðωÞ ¼

Cϕ
⋆ðω1ÞCϕ

⋆ðω2Þ
j1 − g2Sϕ⋆ðω1ÞSϕ⋆ðω2Þj2

ðE5Þ

for the activations, and

Ψx
⋆ðωÞ ¼ Cx

⋆ðω1ÞCx
⋆ðω2Þ þ jUðωÞj2Cϕ

⋆ðω1ÞCϕ
⋆ðω2Þ

þ UðωÞCxϕ
⋆ ðω1ÞCxϕ

⋆ ðω2Þ þ H:c:; ðE6aÞ

UðωÞ ¼ g2Sx⋆ðω1ÞSx⋆ðω2Þ
1 − g2Sϕ⋆ðω1ÞSϕ⋆ðω2Þ

ðE6bÞ

for the preactivations, where ω ¼ ðω1;ω2Þ and Cxϕ
⋆ ðωÞ is a

cross-covariance between the preactivation and activation.
Note that, if the joint distribution of preactivations were
Gaussian, Ψx

⋆ðτÞ and Ψϕ
⋆ðτÞ would differ only by a

proportionality constant due to Price’s theorem [98]. The
more complex relationship observed here reflects the non-
Gaussian joint statistics across different neurons, which is
relevant because the network is nonlinear.

APPENDIX F: PATH-INTEGRAL CALCULATION
OF TWO- AND FOUR-POINT FUNCTIONS FOR

I.I.D. COUPLINGS

The general program, for i.i.d. or structured couplings, is
as follows:
(1) Formulate the field theory. Begin with the path

integral Z½J� and average over the connectivity
disorder. Introduce auxiliary fields representing
two-point functions [such as Cϕðt1; t2Þ] along with
their conjugate partners. Use integral representations
of δ functions to enforce field definitions, factorizing
the exponential over extensive dimensions. This
yields a statistical field theory with action N times
an order-one function of the auxiliary fields.

(2) Solve the saddle-point equations. Find the saddle
point by setting action derivatives to zero. This
produces self-consistent equations for the two-point
functions, completing the standard DMFT analysis.

(3) Compute the Hessian. Calculate the time2–by– time2

Hessian matrix, which depends on four time vari-
ables ðt1; t2; t3; t4Þ and characterizes fluctuations
around the saddle point.

(4) Apply temporal separation limits. Impose the tem-
poral limits [Eq. (34)], making the Hessian blocks
translation-invariant functions of time differences
ðτ1; τ2Þ. Transform to Fourier space to obtain a low-
dimensional, frequency-dependent Hessian whose
elements are functions of ðω1;ω2Þ.

(5) Invert the frequency-space Hessian. Perform matrix
inversion to directly obtain Ψa

⋆ðωÞ. If needed, apply
inverse Fourier transform to recover Ψa

⋆ðτÞ.
Here, we consider i.i.d. J with mean zero and variance

g2=N. After performing the Gaussian integration over J, we
introduce an auxiliary field Cϕðt1; t2Þ, defined by Eq. (17),
and its conjugate Ĉϕðt1; t2Þ to factorize the action across the
neuron index i. This leads to a partition function for a
statistical field theory involving Cϕðt1; t2Þ and Ĉϕðt1; t2Þ,

Z ¼
Z

DC
ϕ
Z

DĈ
ϕ
exp ð−NS½Cϕ; Ĉϕ�Þ; ðF1Þ

where the intensive action is

S½Cϕ; Ĉϕ� ¼ −
1

2
CϕĈϕ − logW½Cϕ; Ĉϕ�; ðF2Þ

and the single-site path integral is

W½Cϕ; Ĉϕ�

¼
Z

Dx
Z

Dx̂ exp

�
ix̂T½x� − g2

2
x̂Cϕx̂ −

1

2
ϕĈϕϕ

�
:

ðF3Þ

1. Two-point functions

In the limit N → ∞, the saddle point dominates this
integral. The derivatives of the action, which are zero at the
saddle point, are

δS
δCϕðt1; t2Þ

¼ −Ĉϕðt1; t2Þ þ g2hx̂ðt1Þx̂ðt2ÞiW; ðF4Þ

δS

δĈϕðt1; t2Þ
¼ −Cϕðt1; t2Þ þ hϕðt1Þϕðt2ÞiW; ðF5Þ

where h� � �iW denotes an averagewithin the dynamic process
described by W½Cϕ; Ĉϕ�. In evaluating derivatives of the
action, we follow the rule that derivatives with respect to
Cϕðt1; t2Þ also affect Cϕðt2; t1Þ, and likewise for Ĉϕðt1; t2Þ,
due to the symmetry in the action. Using the vanishing of
correlation functions involving only the conjugate field x̂ðtÞ,
the saddle-point conditions yield

Ĉϕ
⋆ðt1; t2Þ ¼ 0; ðF6Þ
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Cϕ
⋆ðt1; t2Þ ¼ hϕðt1Þϕðt2Þi⋆; ðF7Þ

where h� � �i⋆ denotes an averagewithin the dynamic process
described by W½Cϕ

⋆; 0�. This recovers the same single-site
process [Eqs. (E2) and (E3)] and self-consistency condition
[Eq. (E4)] described in Appendix E.

2. Four-point functions

We now compute Ψa
⋆ðτÞ within the path-integral for-

malism. Fluctuations around the saddle point derived above
are governed by the Hessian of the action [60,99]. This
Hessian has blocks given by

HCϕCϕðt1; t2; t3; t4Þ ¼
δ2S

δCϕðt1; t2ÞδCϕðt3; t4Þ
¼ −g4hhx̂ðt1Þx̂ðt2Þ; x̂ðt3Þx̂ðt4Þii⋆;

ðF8aÞ

HCϕĈϕðt1; t2; t3; t4Þ ¼
δ2S

δCϕðt1; t2ÞδĈϕðt3; t4Þ
¼ −Iðt1; t2; t3; t4Þ
− g2hhx̂ðt1Þx̂ðt2Þ;ϕðt3Þϕðt4Þii⋆;

ðF8bÞ

HĈϕĈϕðt1; t2; t3; t4Þ ¼
δ2S

δĈϕðt1; t2ÞδĈϕðt3; t4Þ
¼ −hhϕðt1Þϕðt2Þ;ϕðt3Þϕðt4Þii⋆;

ðF8cÞ

where hhA;Bii⋆¼hABi⋆−hAi⋆hBi⋆, and Iðt1; t2; t3; t4Þ ¼
δðt1 − t3Þδðt2 − t4Þ þ δðt1 − t4Þδðt2 − t3Þ. Expanding the
action to second order around the saddle point, the path
integral becomes

Z ¼ exp ð−NS½Cϕ
⋆; 0�Þ

Z
DδCϕDδĈϕ exp

�
−
N
2

�
δCϕ

δĈϕ

�T�HCϕCϕ HCϕĈϕ

HT
ĈϕCϕ HĈϕĈϕ

��
δCϕ

δĈϕ

��
;

revealing the structure of the Gaussian fluctuations around the saddle point. The covariance matrix among the fluctuation

variables δCϕðt1; t2Þ and δĈϕðt1; t2Þ is 1=N times the inverse Hessian, yielding

NhδCϕðt1; t2ÞδCϕðt3; t4Þi⋆ ¼ ½HCϕCϕ −HCϕĈϕH−1
ĈϕĈϕHĈϕCϕ �−1ðt1; t2; t3; t4Þ:

In principle, we have all the necessary components to
evaluate this expression: The single-site dynamics are
known via the saddle-point condition, and the Hessian
blocks are given in terms of connected correlation functions
in this single-site process. We could then take the temporal
separation limits of Eq. (34) to obtainΨϕ

⋆ðτÞ. The challenge
is that each Hessian block is a complicated time2–by– time2

matrix that, for general values of the time variables, has no
analytic inverse. To circumvent this problem, we show in
Appendix G that the temporal limits of Eq. (34) can be
taken before taking the inverses. Under these temporal
limits, the Hessian blocks are

HĈϕĈϕðt1; t2; t3; t4Þ ¼ −Cϕ
⋆ðτ1ÞCϕ

⋆ðτ2Þ; ðF9Þ

HCϕĈϕðt1; t2; t3; t4Þ ¼ −δðτ1Þδðτ2Þ þ g2Sϕ⋆ðτ1ÞSϕ⋆ðτ2Þ;
ðF10Þ

HCϕCϕðt1; t2; t3; t4Þ ¼ 0; ðF11Þ

where we used the fact that multiplication by −ix̂ðtÞ is
equivalent to a functional derivative with respect to a source

at time t. Since the relevant quantities are now translation
invariant, i.e., depend only on τ1 and τ2, we can transform
to Fourier space. In this representation, each Hessian block
becomes a frequency-dependent scalar,

HĈϕĈϕðωÞ ¼ −Cϕ
⋆ðω1ÞCϕ

⋆ðω2Þ; ðF12Þ

HCϕĈϕðωÞ ¼ −1þ g2Sϕ⋆ðω1ÞSϕ⋆ðω2Þ; ðF13Þ

HCϕCϕðωÞ ¼ 0: ðF14Þ

In summary, the full Hessian can be replaced by a 2 × 2,
frequency-dependent Hessian given by

H ¼
�

0 −1þ g2ðSϕ12Þ�
−1þ g2Sϕ12 −Cϕ

12

�
; ðF15Þ

where we simplified notation by suppressing frequency
arguments via the shorthand Cϕ

12 ¼ Cϕ
⋆ðω1ÞCϕ

⋆ðω2Þ and
Sϕ12 ¼ Sϕ⋆ðω1ÞSϕ⋆ðω2Þ. The Fourier-space function Ψϕ

⋆ðωÞ
is the upper-left element of the inverse of this matrix.
Performing the 2 × 2 matrix inversion gives
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Ψϕ
⋆ ¼ Cϕ

12

j1 − g2Sϕ12j2
; ðF16Þ

which agrees with the two-site cavity result [Eq. (E5)].

3. Adding sources

Above, computing Ψϕ
⋆ðτÞ was simplified by Cϕðt1; t2Þ

appearing naturally in the statistical field theory resulting
from integrating out J. To compute Ψx

⋆ðτÞ, we need to
introduce a source-field term in the action.
Consider a general intensive action S½C;J �, where C is a

collection of fields (e.g., C ¼ fCϕ; Ĉϕg), and J is a source.
Our goal is to compute

δ2

δJ 2
logZ

����
J¼0

; ðF17Þ

which gives the fluctuations around the mean of the
quantity multiplying J in the action. To facilitate this
calculation, we introduce a new fieldU and set it equal to J
using the conjugate Û,

Z½J � ¼
Z

DC
Z

DU
Z

DÛ

× exp ð−NÛU þ NÛJ − NS½C;U�Þ: ðF18Þ

Instead of taking the second derivative with respect to J ,
we set J ¼ 0 and compute the fluctuations of Û, measured
by Eq. (F17), in the augmented theory whose path integral
is

Z ¼
Z

DC
Z

DU
Z

DÛ expð−NS̃½C; U; Û�Þ; ðF19Þ

where

S̃½C; U; Û� ¼ ÛU þ S½C;U�: ðF20Þ

The Hessian of the augmented action, in terms of the
Hessian of the original action, is0BB@ H

∂
2S

∂J ∂C 0

∂
2S

∂J ∂C

�T ∂
2S

∂J 2 1

0T 1 0

1CCA; ðF21Þ

where

Hab ¼
δ2S

δCaδCb
;

	
δ2S

δJ δC



a
¼ δ2S

δJ δCa
: ðF22Þ

The fluctuations of Û are given by the bottom-right element
of the inverse Hessian evaluated at the saddle point. Using a
Schur complement to compute this element, we obtain

δ2

δJ 2
logZ

����
J¼0

¼
	
−
δ2S
δJ 2

þ
�

δ2S
δJ δC

�
T

H−1 δ2S
δJ δC



J¼0

;

ðF23Þ

with all quantities evaluated at the saddle point. By
applying this formula to the action of the i.i.d. model with
the source term − 1

2
xJ x added to the single-site path

integral [Eq. (F3)], we recover the expression for Ψx
⋆ðτÞ

from the two-site cavity method [Clark et al. [39];
Eq. (F3)]. For actions of the form S½C;J � ¼
−JCa þ J -independent terms, this formula reduces to
ðδ2=δJ 2Þ logZjJ¼0 ¼ ½H−1�aa, as expected.
We now apply Eq. (F23) to the action of the i.i.d.

connectivity model with a source term for correlations
among preactivations. The action is

S½Cϕ; Ĉϕ� ¼ −
1

2
CϕĈϕ − log

Z
Dx

Z
Dx̂

× exp

�
ix̂T½x�− g2

2
x̂Cϕx̂−

1

2
ϕĈϕϕ−

1

2
xJ x

�
:

ðF24Þ

Computing the necessary quantities and taking the tempo-
ral limits of Eq. (34), we obtain, in Fourier space,

δ2S
δJ 2

¼ −Cx
12;

δ2S
δJ δC

¼
�
g2ðSx12Þ�
−Cxϕ

12

�
; ðF25Þ

where Cxϕ
12 ¼ Cxϕ

⋆ ðω1ÞCxϕ
⋆ ðω2Þ and Sx12 ¼ Sx⋆ðω1ÞSx⋆ðω2Þ.

Substituting these into Eq. (F23) and using the frequency-
dependent Hessian from Eq. (F15), we obtain

Ψx
⋆¼Cx

12þjUj2Cϕ
12þUCxϕ

12 þH:c:; whereU¼ g2Sx12
1−g2Sϕ12

;

ðF26Þ

in agreement with the two-site cavity result of Clark et al.
(Ref. [39]), given in Eq. (E6).

4. Other kinds of path integrals

Different path-integral formalisms have been applied to
neural-network models depending on the underlying
dynamics. The Doi-Peliti formalism [100] derives path
integrals from master equations for systems with non-
negative integer degrees of freedom (such as spiking neural
networks) that evolve according to master equations, using
an operator formalism as an intermediate step. In contrast,
we use the MSRJD formalism for continuous-time sto-
chastic differential equations, which naturally describes our
rate-based network dynamics. For a comprehensive dis-
cussion of different path-integral approaches in neural-
network theory, see Ref. [69].
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APPENDIX G: TEMPORAL LIMITS AND INVERSES

Here, we demonstrate, for the i.i.d. model, that the temporal limits in Eq. (34) can be taken before the inverses. This
allows us to work with a frequency-dependent Hessian. In this section, we use Einstein notation for integrals over time
variables (i.e., repeated time indices are integrated over). We would like to evaluate

Ψϕðτ1; τ2Þ ¼ U−1ðt1; t2; s1; s2ÞKðs1; s2; s3; s4ÞU−1ðt1 þ τ1; t2 þ τ2; s3; s4Þ ðG1Þ

in the limits of Eq. (34), where Uðt1; t2; t3; t4Þ ¼ HĈϕCϕðt1; t2; t3; t4Þ and Kðt1; t2; t3; t4Þ ¼ HĈϕĈϕðt1; t2; t3; t4Þ [note that
HCϕCϕðt1; t2; t3; t4Þ ¼ 0 due to the vanishing of correlation functions involving only the conjugate field]. Restating Eq. (F8),
we have

Uðt1; t2; t3; t4Þ ¼ −½δðt1 − t3Þδðt2 − t4Þ þ δðt1 − t4Þδðt2 − t3Þ� − g2⟪ϕðt1Þϕðt2Þ; x̂ðt3Þx̂ðt4Þ⟫⋆; ðG2Þ

Kðt1; t2; t3; t4Þ ¼ ⟪ϕðt1Þϕðt2Þ;ϕðt3Þϕðt4Þ⟫⋆: ðG3Þ

We assume temporal stationarity throughout this section
and consider only a ¼ ϕ.
We start by examining the properties of Uðt1; t2; t3; t4Þ.

U vanishes if one of the four time points is far [measured on
the timescale of Cϕ

⋆ðτÞ] from the other three. For t1 or t2,
this is a consequence of the perturbation associated with
x̂ðt1Þ or x̂ðt2Þ being far away; for t3 or t4, this is a
consequence of hϕðtiÞi⋆ ¼ 0 separating from the expect-
ation. U also vanishes if there is more than one time
point which is far from the remaining ones by the same
arguments. Thus, the time points need to be close in pairs.

However, if t1, t2 are close and t3, t4 are close, but the pairs
are distant, U still vanishes since the perturbations asso-
ciated with x̂ðtiÞ are both far. This leaves three possibilities
for a nonvanishing U: t1, t3 close and t2, t4 close, but the
pairs are distant; t1, t4 close and t2, t3 close, but the pairs are
distant; or all time points are close.
Separating the three possibilities into two subdomains

where all time points are close (c) and where the time points
belong to either of the two pairwise separate (s) possibil-
ities, we write U ¼ Us þUc, where Us and Uc are defined
to vanish on the respective other domain. On the separated
domain, U simplifies to

Usðt1; t2; t3; t4Þ ¼ −½δðt1 − t3Þδðt2 − t4Þ þ δðt1 − t4Þδðt2 − t3Þ�
þ g2½Sϕ⋆ðt1 − t3ÞSϕ⋆ðt2 − t4Þ þ Sϕ⋆ðt1 − t4ÞSϕ⋆ðt2 − t3Þ�; ðG4Þ

where we used that the two distant contributions are
nonoverlapping to add them.
We assume that we can also decompose the inverse

into a contribution for separate pairs and a contributionwhere
all time points are close, U−1 ¼ U−1

s þ U−1
c , where again

U−1
s and U−1

c vanish on the respective other domain. We
demonstrate thatU−1

s is the inverse ofUs, and thatU−1
c is the

inverse of Uc, by noting that U−1ðt1; t2; s1; s2Þ
Uðs1; s2; t3; t4Þ reduces to the contraction of U−1

c and Uc
if t3 and t4, andhence s1 and s2, are close; or to the contraction
of U−1

s and Us if t3 and t4, and hence s1 and s2, are distant.
For Eq. (G1), we need U−1

s due to the limits of Eq. (34).
The fact that U reduces to Us in the limits of Eq. (34)
justifies taking the limits before inverting U. Furthermore,
these limits imply that, in Eq. (G1), s1 and s2, as well as s3
and s4, are far apart. In this case, K simplifies to

Ksðs1; s2; s3; s4Þ ¼ Cϕ
⋆ðs1 − s3ÞCϕ

⋆ðs2 − s4Þ
þ Cϕ

⋆ðs1 − s4ÞCϕ
⋆ðs2 − s3Þ: ðG5Þ

This justifies taking the limits of Eq. (34) for K.

APPENDIX H: PARTIALLY SYMMETRIC
DISORDER

To demonstrate the flexibility of the path-integral
approach to computing the four-point function, we now
consider a generalization of the classic i.i.d. model in which
we introduce correlations between reciprocal couplings,
characterized by the following statistics:

hJijJkli ¼
g2

N
δikδjl þ

g2ρ
N

δilδjk: ðH1Þ

Here, ρ∈ ½−1; 1� is a parameter that controls the degree of
symmetry in the connectivity. When ρ ¼ 1, the connectiv-
ity is fully symmetric, while ρ ¼ −1 corresponds to fully
antisymmetric connectivity. The case ρ ¼ 0 recovers the
i.i.d. model. We express this partially symmetric connec-
tivity as a linear combination of two matrices, X and Y, that
are i.i.d. random with mean zero and variance 1=N,

Jij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − jσj

q
Xij þ

ffiffiffiffiffiffi
jσj
2

r
½Yij þ sgnðσÞYji�; ðH2Þ
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where σ ¼ ρg2. In terms of X and Y, the path integral for this partially symmetric model is

Z½X;Y� ¼
Z

Dx
Z

Dx̂ exp

�
i
XN
i¼1

x̂iT½xi� − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − jσj

q XN
i;j¼1

Xijx̂iϕj − i

ffiffiffiffiffiffi
jσj
2

r XN
i;j¼1

Yij½x̂iϕj þ sgnðσÞϕix̂j�
�
: ðH3Þ

We integrate out X and Y. To factorize the action over
indices spanning extensive dimensions, we introduce

Cϕðt1;t2Þ¼
1

N

XN
i¼1

ϕiðt1Þϕiðt2Þ; conjugate∶ Ĉϕðt1;t2Þ;

ðH4Þ

Sϕðt1; t2Þ ¼
1

N

XN
i¼1

δϕiðt1Þ
δIiðt2Þ

; conjugate∶ Ŝϕðt1; t2Þ:

ðH5Þ
We obtain, for the disorder-averaged path integral,

Z¼
Z

DC ϕ
Z

DĈ ϕ
Z

DR
Z

DR̂expð−NS½Cϕ;Ĉϕ;Sϕ;Ŝϕ�Þ;

ðH6Þ

S½Cϕ; Ĉϕ; Sϕ; Ŝϕ� ¼ −
1

2
CϕĈϕ þ σ

2
SϕŜϕ

− logW½Cϕ; Ĉϕ; Sϕ; Ŝϕ�; ðH7Þ

W½Cϕ; Ĉϕ; Sϕ; Ŝϕ�

¼
Z

Dx̂
Z

Dx exp

�
ix̂T½x� − 1

2
ϕĈϕϕ

−
g2

2
x̂Cϕx̂ −

iσ
2
ϕŜϕx̂ −

iσ
2
x̂Sϕϕ

�
: ðH8Þ

1. Two-point functions

To obtain the saddle-point solution, we compute the
derivatives of the action, under the rule that derivatives with
respect to Sϕðt1; t2Þ also affect Ŝϕðt2; t1Þ, and vice versa,
due to the symmetry in the action. This gives

δS
δCϕðt1; t2Þ

¼ −Ĉϕðt1; t2Þ þ g2hx̂ðt1Þx̂ðt2ÞiW; ðH9Þ

δS

δĈϕðt1; t2Þ
¼ −Cϕðt1; t2Þ þ hϕðt1Þϕðt2ÞiW; ðH10Þ

δS
δSϕðt1; t2Þ

¼ σŜϕðt1; t2Þ þ iσhx̂ðt1Þϕðt2ÞiW; ðH11Þ

δS

δŜϕðt1; t2Þ
¼ σSϕðt1; t2Þ þ iσhϕðt1Þx̂ðt2ÞiW: ðH12Þ

Setting these derivatives to zero yields the saddle-point
conditions,

Ĉϕ
⋆ðt1; t2Þ ¼ 0; ðH13Þ

Cϕ
⋆ðt1; t2Þ ¼ hϕðt1Þϕðt2Þi⋆; ðH14Þ

Sϕ⋆ðt1; t2Þ ¼ Ŝϕ⋆ðt2; t1Þ ¼
�
δϕðt1Þ
δIðt2Þ

�
⋆
; ðH15Þ

where h� � �i⋆ denotes an average within the dynamic
process described by W½Cϕ

⋆; 0; S
ϕ
⋆; Ŝ

ϕ
⋆�. The single-site

process at the saddle point is described by

T½x�ðtÞ ¼ ηxðtÞ þ σ½Sϕ⋆ ∘ϕ�ðtÞ; ðH16Þ

ηx ∼ GPð0; g2Cϕ
⋆Þ; ðH17Þ

where ∘ denotes convolution. The symmetric structure pro-
vides a convolutional, nonlinear self-coupling σ½Sϕ⋆ ∘ϕ�ðtÞ
in the single-site dynamics. The two-point correlation and
response functionsCϕ

⋆ðτÞ andSϕ⋆ðτÞmust be determined self-
consistently within this single-site picture.

2. Four-point functions

Introducing the notation Cϕ
k ¼ Cϕ

⋆ðωkÞ, Sϕk ¼ Sϕ⋆ðωkÞ for
k ¼ 1, 2, the frequency-dependent Hessian at the saddle
point is

H ¼

0BBBBB@
0 −1þ g2Sϕ12 0 0

−1þ g2ðSϕ12Þ� −Cϕ
12 σðSϕ1 Þ�Cϕ

2 σðSϕ2 Þ�Cϕ
1

0 σSϕ1C
ϕ
2 0 σ − σ2Sϕ1 ðSϕ2 Þ�

0 σSϕ2C
ϕ
1 σ − σ2ðSϕ1 Þ�Sϕ2 0

1CCCCCA: ðH18Þ
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Inverting this matrix and isolating the upper-left
element, we obtain, in agreement with Clark et al.
(Ref. [39]),

Ψϕ
⋆ ¼ 1

j1 − g2Sϕ12j2
1 − jσðSϕ1 Þ�Sϕ2 j2
j1 − σðSϕ1 Þ�Sϕ2 j2

Cϕ
12: ðH19Þ

APPENDIX I: PATH-INTEGRAL CALCULATION
OF TWO- AND FOUR-POINT FUNCTIONS FOR

THE RANDOM-MODE MODEL

Having demonstrated the path-integral approach to com-
puting two- and four-point functions for i.i.d. couplings, we
now apply this formalism to the random-mode model. In
terms of the mode matrices L and R, the path integral is

Z½L;R� ¼
Z

Dx
Z

Dx̂ exp

�
i
XN
i¼1

x̂iT½xi� − i
XN
i;j¼1

½LDR�ijx̂iϕj

�
: ðI1Þ

Wewould like to integrate out L and R, but this is complicated by them appearing together in a quadratic term in the action.
To simplify the integration, we introduce a set of M latent variables,

zaðtÞ ¼ Da

XN
i¼1

RiaϕiðtÞ; ðI2Þ

and their conjugates ẑaðtÞ. We use indices i, j for neurons and a, b for latent variables. The introduction of these latent
variables makes the action linear in L and R,

Z½L;R� ¼
Z

Dx
Z

Dx̂
Z

Dz
Z

Dẑ exp

�
i
XN
i¼1

x̂iT½xi� þ i
XM
a¼1

zaẑa − i
X
i;a

Liax̂iza − i
X
i;a

DaRiaϕiẑa

�
: ðI3Þ

We can now easily integrate out L and R. To factorize the action over indices spanning extensive dimensions, we introduce
the field Cϕðt1; t2Þ [Eq. (17)] with conjugate Q̂ðt1; t2Þ as well as

Qðt1; t2Þ ¼
1

N

XM
a¼1

zaðt1Þzaðt2Þ ðI4Þ

with conjugate Ĉϕðt1; t2Þ. The disorder-averaged path integral is

Z ¼
Z

DC ϕ
Z

DĈ ϕ
Z

DQ
Z

DQ̂ exp ð−NS½Cϕ; Ĉϕ; Q; Q̂�Þ; ðI5Þ

S½Cϕ; Ĉϕ; Q; Q̂� ¼ −
1

2
CϕQ̂ −

1

2
QĈϕ − logWx½Q; Q̂� − αhlogWz

D½Cϕ; Ĉϕ�iD; ðI6Þ

Wx½Q; Q̂� ¼
Z

Dx
Z

Dx̂ exp

�
ix̂T½x� − 1

2
ϕQ̂ϕ −

1

2
x̂Qx̂

�
; ðI7Þ

Wz
D½Cϕ; Ĉϕ� ¼

Z
Dz

Z
Dẑ exp

�
iẑz −

1

2
zĈϕz −

1

2
D2ẑCϕẑ

�
: ðI8Þ

Thus, analysis of the path integral is made tractable by
recasting the problem as interacting neurons and latent
variables. The neuronal single-site picture is described by
Wx½Q; Q̂�, and the latent-variable single-site picture is
described by Wz

D½Cϕ; Ĉϕ�, where the subscript D reflects
that each latent variable has its own component strength.
This formulation introduces an extensive set of latent

variables zaðtÞ, in contrast to the finite set of latent
variables, conventionally denoted by κaðtÞ, in low-rank
neural networks [42,44]. The statistics of the Gaussian
input to each single-site process (neurons or latent varia-
bles) are determined by the statistics of the other process,
creating a bipartite, mutually referential structure that also
arises in the cavity treatment of the problem.
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1. Two-point functions

Following the steps outlined at the end of Sec. F 2, we
first compute the DMFT by calculating the saddle point.
The derivatives of the action are

δS
δCϕðt1; t2Þ

¼ −Q̂ϕðt1; t2Þ þ αhD2hẑðt1Þẑðt2ÞiWz
D
i
D
; ðI9Þ

δS

δĈϕðt1; t2Þ
¼ −Qðt1; t2Þ þ αhhzðt1Þzðt2ÞiWz

D
i
D
; ðI10Þ

δS
δQðt1; t2Þ

¼ −Ĉϕðt1; t2Þ þ hx̂ðt1Þx̂ðt2ÞiWx; ðI11Þ

δS

δQ̂ðt1; t2Þ
¼ −Cϕðt1; t2Þ þ hϕðt1Þϕðt2ÞiWx; ðI12Þ

where h� � �iWx and h� � �iWz
D

are averages within the

dynamic processes described by Wx½Q; Q̂� and
Wz

D½Cϕ; Ĉϕ�, respectively. Setting these derivatives to zero
yields

Ĉϕ
⋆ðt1; t2Þ ¼ Q̂⋆ðt1; t2Þ ¼ 0; ðI13Þ

Cϕ
⋆ðt1; t2Þ ¼ hϕðt1Þϕðt2Þi⋆; ðI14Þ

Q⋆ðt1; t2Þ ¼ αhhzðt1Þzðt2Þi⋆DiD; ðI15Þ

where h� � �i⋆ and h� � �i⋆D are averages within the dynamic
processes described by Wx½Q⋆; 0� and Wz

D½Cϕ
⋆; 0�, respec-

tively. These single-site processes are

T½x�ðtÞ ¼ ηxðtÞ; ðI16Þ

zðtÞ ¼ ηzðtÞ; ðI17Þ

where ηxðtÞ and ηzðtÞ are Gaussian fields,

ηx ∼ GPð0; Q⋆Þ; ðI18Þ

ηz ∼ GPð0; D2Cϕ
⋆Þ; ðI19Þ

showing that the neuronal and latent-variable single-site
processes have mutually referential statistics [101].

FIG. 10. Analysis of dimension of activity and covariance spectrum in the low-effective-rank limit. (a) Top: dimension of activity PRϕ

versus effective rank αPRD (α ¼ 1) for various coupling strengths geff . Component strengths Da are constant for a=N ≤ PRD and 0
otherwise. Small dots, individual simulations; large dots, means over ten simulations; solid lines, theoretical predictions; dotted lines,
small-PRD expansion, KϕðgeffÞPRD. Inset: ratio of proportionality factor KϕðgeffÞ to PRϕ

i:i:d: versus geff . Bottom: same analysis for

preactivations. (b) Top: rank-ordered eigenvalue plots for activation covariance matrix Cϕ
ijð0Þ. Dotted vertical lines indicate NPRD.

Bottom: same for preactivations. All simulations use N ¼ 6500 neurons.
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Solving for Q⋆ðt1; t2Þ by combining Eqs. (I15), (I17),
and (I19), we obtain Q⋆ðt1; t2Þ ¼ αr2C

ϕ
⋆ðt1; t2Þ, with rn

defined by Eq. (10). Consolidating these results
yields Eq. (36c).

2. Four-point functions

The frequency-dependent saddle-point Hessian is

H ¼

0BBBBBB@
0 αr2 0 −1
αr2 −αr4C

ϕ
12 −1 0

0 −1 0 Sϕ12
−1 0 ðSϕ12Þ� −Cϕ

12

1CCCCCCA: ðI20Þ

The upper-left block, corresponding to the latent variables,
is related to the Hessian of an i.i.d. network with linear
dynamics and a heterogeneous distribution of single-neu-
ron scale factors Da; the lower-right block, corresponding
to the neurons, is related to the Hessian of an i.i.d. network
of nonlinear neurons [Eq. (F15)]. They are coupled through

the simple off-diagonal blocks, reflecting the interaction
between neurons and latent variables.
This yields the expression for Ψϕ

⋆ [Eq. (38)]. To obtain
Ψx

⋆, we add − 1
2
xJ x to the neuronal single-site path integral

[Eq. (I7)] and compute

δ2S
δJ 2

¼ −Cx
12;

δ2S
δJ δC

¼

0BBBBBB@
0

0

ðSx12Þ�
−Cxϕ

12

1CCCCCCA: ðI21Þ

Inserting these into Eq. (F23) we obtain

Ψx
⋆ ¼ Cx

12 þ
�
1þ 1

αPRD

�
jUj2Cϕ

12 þUCxϕ
12 þ H:c:; ðI22Þ

where U ¼ g2effS
x
12=ð1 − g2effS

ϕ
12Þ [Eq. (E6b) with g ¼ geff ].

Here, we have used the following formula to invert the
Hessian:

0BBBBB@
0 a 0 −1
a� b −1 0

0 −1 0 c

−1 0 c� d

1CCCCCA
−1

¼

0BBBBBB@
− bþjcj2d

j1−acj2 − c�
1−ðacÞ� − adþbc�

j1−acj2 − 1
1−ðacÞ�

− c
1−ac 0 − 1

1−ac 0

− a�dþbc
j1−acj2 − 1

1−ðacÞ� − jaj2dþb
j1−acj2 − a�

1−ðacÞ�

− 1
1−ac 0 − a

1−ac 0

1CCCCCCA: ðI23Þ

APPENDIX J: PATH-INTEGRAL CALCULATION OF TWO- AND FOUR-POINT FUNCTIONS FOR THE
RANDOM-MODE MODEL WITH SINGLE-UNIT HETEROGENEITY

We incorporate the generalized nonlinearity ΦθiðxÞ into the path integral, as well as a source term for the normalized
variables, and integrate out L and R. To factorize the action over indices spanning extensive dimensions, we introduce the
order parameters

CΦðt1; t2Þ ¼
1

N

XN
i¼1

Φθiðt1ÞΦθiðt2Þ; conjugate∶ Q̂ðt1; t2Þ; ðJ1Þ

Qðt1; t2Þ ¼
1

N

XM
a¼1

zaðt1Þzaðt2Þ; conjugate∶ Ĉϕðt1; t2Þ; ðJ2Þ

where ΦθiðtÞ ¼ Φθi ½xiðtÞ�. The resulting action and single-site path integrals for this system are

S½CΦ; ĈΦ; Q; Q̂� ¼ −
1

2
CΦQ̂ −

1

2
QĈϕ − hlogWθ½Q; Q̂;J �iθ − αhlogWz

D½CΦ; ĈΦ�iD; ðJ3Þ

Wx
θ½Q; Q̂;J � ¼

Z
Dx

Z
Dx̂ exp

�
ix̂T½x� − 1

2
ΦθQ̂Φθ −

1

2
x̂Qx̂ −

1

2
ϕJϕ

�
; ðJ4Þ

Wz
D½CΦ; ĈΦ� ¼

Z
Dz

Z
Dẑ exp

�
iẑz −

1

2
zĈΦz −

1

2
D2ẑCΦẑ

�
: ðJ5Þ

DAVID G. CLARK et al. PHYS. REV. X 15, 041019 (2025)

041019-26



1. Two-point functions

The saddle-point calculation proceeds similarly to the
nonheterogeneous case of the random-mode model. We
obtain

ĈΦ
⋆ðt1; t2Þ ¼ Q̂⋆ðt1; t2Þ ¼ 0; ðJ6Þ

CΦ
⋆ðt1; t2Þ ¼ hhΦθðt1ÞΦθðt2Þi⋆iθ; ðJ7Þ

Q⋆ðt1; t2Þ ¼ αhhzðt1Þzðt2Þi⋆DiD; ðJ8Þ

where h� � �i⋆ and h� � �i⋆D are averages with respect to
Wx

θ½Q⋆; 0; 0� and Wz
D½CΦ

⋆ ; 0�, respectively (note
that Wx

θ½Q⋆; 0; 0� does not depend on θ). Using
hzðt1Þzðt2Þi⋆D¼D2CΦ

⋆ðt1;t2Þ and, consequently,
Q⋆ðt1; t2Þ ¼ αr2CΦ

⋆ðt1; t2Þ, we obtain the self-consistent
single-site dynamic process

T½x�ðtÞ ¼ ηxðtÞ; ðJ9aÞ

ηx ∼ GPð0; αr2CΦ
⋆Þ; ðJ9bÞ

CΦ
⋆ðt1; t2Þ ¼ hhΦθðt1ÞΦθðt2Þi⋆iθ: ðJ9cÞ

The self-consistency condition [Eq. (J9c)] is identical to that
of an i.i.d. network, but with an average over θ ∼ PðθÞ, in
addition to the usual Gaussian average over ηxðtÞ, to account
for single-neuron heterogeneity.

2. Four-point functions

To write down the solution for the four-point function,
we define new two-frequency correlation functions with an
outer average over θ ∼ PðθÞ,

CΦ
12 ¼ hhΦθΦθi⋆ðω1ÞhΦθΦθi⋆ðω2Þiθ; ðJ10aÞ

sΦ12 ¼
��

δΦθ

δI

�
⋆
ðω1Þ

�
δΦθ

δI

�
⋆
ðω2Þ

�
θ
; ðJ10bÞ

CΦϕ
12 ¼ hhΦθϕi⋆ðω1ÞhΦθϕi⋆ðω2Þiθ; ðJ10cÞ

along with the usual shorthand CΦ
12 ¼ CΦ

⋆ðω1ÞCΦ
⋆ðω2Þ.

The frequency-dependent Hessian at the saddle point is

H ¼

0BBBBB@
0 αr2 0 −1
αr2 −αr4CΦ

12 −1 0

0 −1 0 sΦ12
−1 0 ðsΦ12Þ� −CΦ

12

1CCCCCA; ðJ11Þ

where the new Fraktur variables are defined in Eq. (J10).
We invert the Hessian using Eq. (I23) and identify the
upper-left element as ΦθiðωÞ,

ΨΦ
⋆ ¼

CΦ
12

CΦ
12

þ 1
αPRD jαr2sΦ12j2

j1 − αr2sΦ12j2
CΦ
12: ðJ12Þ

Combining the inverted Hessian with the relevant quan-
tities for computing fluctuations of normalized variables,

δ2S
δJ 2

¼ −Cϕ
12;

δ2S
δJ δC

¼

0BBBBB@
0

0

ðSϕ12Þ�
−CΦϕ

12

1CCCCCA; ðJ13Þ

where

CΦϕ
12 ¼ hhΦθϕi⋆ðω1ÞhΦθϕi⋆ðω2Þiθ; ðJ14Þ

Sϕ12 ¼
�
δϕ

δI

�
⋆
ðω1Þ

�
δϕ

δI

�
⋆
ðω2Þ; ðJ15Þ

we obtain for the normalized variables ϕiðtÞ,

Ψϕ
⋆¼

	
jAj2

�
CΦ

12

Cϕ
12

þ 1

αPRD

CΦ
12

Cϕ
12

�
þ
�
A
CΦϕ

12

Cϕ
12

þH:c:
�
þ1



Cϕ
12;

ðJ16Þ

where

A ¼ αr2S
ϕ
12

1 − αr2s
ϕ
12

: ðJ17Þ

3. Four-point functions for firing-rate heterogeneity

Upon specializing the above general results to the case
where θi contains a single gain parameter Gi, we obtain the
four-point functions for unnormalized [Eq. (46a)] and
normalized [Eq. (46b)] variables given in the main text.
Note that, like the distribution over component strengths

Da, two-point functions of activity depend only on the
second moment of Gi, and four-point functions depend
only on the second and fourth moments of Gi.
For “random-readout” gains with the same distribution

as the recurrent gains (see main text), the four-point
function is

ΨΦreadout ¼
	�

1

PRG − 1

�
ðj1 − g2effS

ϕ
12j2 þ jg2effSϕ12j2Þ

þ 1þ 1

αPRD jg2effSϕ12j2



CΦreadout

12

j1 − g2effS
ϕ
12j2

; ðJ18Þ

where CΦreadout

12 ¼ CΦ
12 ¼ q22C

ϕ
12.
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We conclude with a note on gain modulation in recurrent
neural networks. It has been shown that modulating single-
neuron gains while keeping synaptic weights fixed has
great expressive power over the dynamics of recurrent
neural networks [102]. Here, we consider random gains
rather than judiciously chosen or learned gains. In particu-
lar, they are sampled independent of the connectivity.
However, our framework could be extended to model gains
that are related to the connectivity and, more ambitiously,
could be extended to model learned gain parameters (or, as
explored in the Discussion, learned connectivity).

APPENDIX K: PATH-INTEGRAL CALCULATION
OF TWO- AND FOUR-POINT FUNCTIONS FOR

THE RANDOM-MODE MODEL WITH
DIAGONALLY STRUCTURED OVERLAPS

To generate matrices L and R with appropriate correla-
tion structure, we express them in terms of independent
Gaussian random matrices X1, X2, and Y, each with
variance 1=N,

Lia ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jρaj

p
X1
ia þ

ffiffiffiffiffiffiffiffi
jρaj

p
Yia; ðK1Þ

Ria ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jρaj

p
X2
ia þ sgnðρaÞ

ffiffiffiffiffiffiffiffi
jρaj

p
Yia: ðK2Þ

We begin with the path integral containing latent
variables, insert this parametrization of L and R, and then
integrate out X1, X2, and Y. To factorize the action over
indices spanning extensive dimensions, we introduce

Cϕðt1; t2Þ ¼
1

N

XN
i¼1

ϕiðt1Þϕiðt2Þ; conjugate∶ Q̂ðt1; t2Þ;

ðK3Þ

Sϕðt1; t2Þ ¼
1

N

XN
i¼1

δϕiðt1Þ
δIiðt2Þ

; conjugate∶ R̂ðt1; t2Þ;

ðK4Þ

Qðt1; t2Þ ¼
1

N

XM
a¼1

zaðt1Þzaðt2Þ; conjugate∶ Ĉϕðt1; t2Þ;

ðK5Þ

Rðt1; t2Þ ¼
1

N

XM
a¼1

Daρa
δzaðt1Þ
δIaðt2Þ

; conjugate∶ Ŝϕðt1; t2Þ:

ðK6Þ

The resulting path integral, action, and single-site path
integrals are given by

Z ¼
Z

DC ϕ
Z

DĈ ϕ
Z

DS ϕ
Z

DŜ ϕ
Z

DQ
Z

DQ̂
Z

DR
Z

DR̂ exp ð−NS½Cϕ; Ĉϕ; Sϕ; Ŝϕ; Q; Q̂; R; R̂�Þ; ðK7Þ

S½Cϕ; Ĉϕ; Sϕ; Ŝϕ; Q; Q̂; R; R̂� ¼ −
1

2
CϕQ̂ −

1

2
QĈϕ þ 1

2
SϕR̂þ 1

2
RŜϕ ðK8Þ

− logWx½Q; Q̂; R; R̂� − αhlogWz
D;ρ½Cϕ; Ĉϕ; Sϕ; Ŝϕ�i

D;ρ
; ðK9Þ

Wx½Q; Q̂; R; R̂� ¼
Z

Dx
Z

Dx̂ exp

�
ix̂T½x� − 1

2
x̂Qx̂ −

1

2
ϕQ̂ϕ −

i
2
x̂Rϕ −

i
2
ϕR̂ x̂

�
; ðK10Þ

Wz
D;ρ½Cϕ; Ĉϕ; Sϕ; Ŝϕ� ¼

Z
Dz

Z
Dẑ exp

�
iẑz −

1

2
D2ẑCϕẑ −

1

2
zĈϕz −

i
2
DρẑSϕz −

i
2
DρzŜϕẑ

�
: ðK11Þ

1. Two-point functions

We first calculate the saddle-point conditions by taking
the derivatives of the action,

δS
δCϕðt1;t2Þ

¼−Q̂ðt1;t2Þþα
�
D2hẑðt1Þẑðt2ÞiWz

D;ρ

�
D;ρ

; ðK12Þ

δS

δĈϕðt1; t2Þ
¼ −Qðt1; t2Þ þ α

�hzðt1Þzðt2ÞiWz
D;ρ

�
D;ρ

; ðK13Þ

δS
δSϕðt1;t2Þ

¼ R̂ðt1;t2Þþ iα
�
Dρhẑðt1Þzðt2ÞiWz

D;ρ

�
D;ρ

; ðK14Þ

δS

δŜϕðt1;t2Þ
¼Rðt1;t2Þþ iα

�
Dρhzðt1Þẑðt2ÞiWz

D;ρ

�
D;ρ

; ðK15Þ

δS
δQðt1; t2Þ

¼ −Ĉϕðt1; t2Þ þ hx̂ðt1Þx̂ðt2ÞiWx; ðK16Þ
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δS

δQ̂ðt1; t2Þ
¼ −Cϕðt1; t2Þ þ hϕðt1Þϕðt2ÞiWx; ðK17Þ

δS
δRðt1; t2Þ

¼ Ŝϕðt1; t2Þ þ ihx̂ðt1Þϕðt2ÞiWx; ðK18Þ

δS

δR̂ðt1; t2Þ
¼ Sϕðt1; t2Þ þ ihϕðt1Þx̂ðt2ÞiWx: ðK19Þ

The saddle-point conditions yield

Ĉϕðt1; t2Þ ¼ Q̂⋆ðt1; t2Þ ¼ 0; ðK20Þ

Cϕ
⋆ðt1; t2Þ ¼ hϕðt1Þϕðt2Þi⋆; ðK21Þ

Sϕ⋆ðt1; t2Þ ¼ Ŝϕ⋆ðt2; t1Þ ¼
�
δϕðt1Þ
δIðt2Þ

�
⋆
; ðK22Þ

Q⋆ðt1; t2Þ ¼ αhhzðt1Þzðt2Þi⋆D;ρiD;ρ; ðK23Þ

R⋆ðt1;t2Þ¼ R̂⋆ðt2;t1Þ¼α

�
Dρ

�
δzðt1Þ
δIðt2Þ

�
⋆D;ρ

�
D;ρ

; ðK24Þ

where h� � �i⋆D;ρ and h� � �i⋆ are averages within the dynamic

processes described by Wz
D;ρ½Cϕ

⋆; 0; S
ϕ
⋆; Ŝ

ϕ
⋆� and

Wx½Q⋆; 0; R⋆; R̂⋆�, respectively. This yields neuronal and
latent-variable single-site processes described by

T½x�ðtÞ ¼ ηxðtÞ þ ½R⋆ ∘ϕ�ðtÞ ðK25Þ

zðtÞ ¼ ηzðtÞ þDρ½Sϕ⋆ ∘ z�ðtÞ; ðK26Þ

where the Gaussian fields have statistics

ηx ∼ GPð0; Q⋆Þ; ðK27Þ

ηz ∼ GPð0; D2Cϕ
⋆Þ: ðK28Þ

This gives rise to the single-site problem stated in Sec. VII.

2. Four-point functions

The frequency-dependent Hessian at the saddle point is

H ¼

0BBBBBBBBBBBBBBBB@

0 u 0 0 0 −1 0 0

u� −vCϕ
1C

ϕ
2 x�12C

ϕ
2 x�21C

ϕ
1 −1 0 0 0

0 x12C
ϕ
2 0 −w� 0 0 0 1

0 x21C
ϕ
1 −w 0 0 0 1 0

0 −1 0 0 0 Sϕ1S
ϕ
2 0 0

−1 0 0 0 ðSϕ1Sϕ2 Þ� −Cϕ
1C

ϕ
2 ðSϕ1 Þ�Cϕ

2 ðSϕ2 Þ�Cϕ
1

0 0 0 1 0 Sϕ1C
ϕ
2 0 −Sϕ1 ðSϕ2 Þ�

0 0 1 0 0 Sϕ2C
ϕ
1 −ðSϕ1 Þ�Sϕ2 0

1CCCCCCCCCCCCCCCCA
ðK29Þ

where

u ¼ αhD2σ1σ2iD;ρ; ðK30Þ

v ¼ αhD4jσ1j2jσ2j2iD;ρ; ðK31Þ

w ¼ αhD2ρ2σ�1σ2iD;ρ; ðK32Þ

x12 ¼ αhD3ρσ1jσ2j2iD;ρ; ðK33Þ

σk ¼
1

1 −DρSϕk
for k ¼ 1; 2: ðK34Þ

Isolating the upper-left element of the inverse of this matrix
yields Eq. (51).

3. Sigmoidal parametrization of overlaps

To model structured left-right mode overlaps, we used
the following sigmoidal form:

ρa ¼ γρ

�
1 −

2

1þ exp½−βρða=N − uflipÞ�
�
; ðK35Þ

where ρa ¼ 0 at a=N ¼ uflip. The parameter γρ sets the
overall magnitude and sign of the overlaps, while βρ
controls the steepness of the transition. We fixed
βρ ¼ 16, varied γρ, and set uflip such that hDρiD;ρ ¼ 0,
thereby eliminating strong self-couplings.
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APPENDIX L: TWO-SITE CAVITY
CALCULATION OF FOUR-POINT FUNCTIONS

FOR THE RANDOM-MODE MODEL

While the path-integral approach provides a systematic
framework for analyzing neural-network dynamics, the
cavity method offers an intuitive, complementary perspec-
tive. This section provides an overview of the cavity
analysis for the random-mode model. While these
approaches yield equivalent results, they differ in their
methodology: The path-integral approach focuses on fluc-
tuations around the saddle point in a field theory, whereas
the cavity approach examines perturbations induced by a
subset of held-out variables. Here, we compute the four-
point function using a two-site cavity approach, noting that
the two-point function (which, if desired, could be com-
puted using a single-site cavity method) is the same as that
of an i.i.d. network with appropriate geff .
Leveraging Eq. (I2), we reformulate the network as a

bipartite system of neurons and latent variables and extend
the cavity calculation of Clark et al. (Ref. [39]) to both
groups. This leads to separate, mutually referential cavity
pictures for each group, mirroring the two single-site path
integrals (Sec. IV). As in the path-integral formalism, self-
consistent expressions in one picture are defined using
averages from the other. Unlike the path-integral approach,
which derives ΨϕðτÞ using its time-by-time definition
[Eq. (25)], the cavity method derives this function using
its neuron-by-neuron definition [Eq. (24)].
The cavity method we employ, schematized in Fig. 11, has

two key features that distinguish it from simpler cavity
calculations. First, it uses a two-site structure: We consider
the simultaneous removal of two neurons, or two latent
variables, from the network, rather than just one. This allows
us to study cross-correlations between neurons. This
approach was previously used in Clark et al. (Ref. [39]).
Second, it incorporates a bipartite structure: We treat both
neurons and latent variables as dynamic objects, creating
separate but mutually referential cavity pictures for each
group. Such bipartite structure, without the two-site structure,
has been used in cavity calculations in the Hopfield
model [69,103,104]. Note that these two features are
distinct: The two-site aspect refers to the number of neurons
removed in each cavity, while the bipartite aspect refers
to the types of variables considered (neurons and latent
variables).
To apply cavity techniques, we reformulate the network

as a bipartite system of neurons and latent variables,

T½xi�ðtÞ ¼
XM
a¼1

LiazaðtÞ; ðL1Þ

zaðtÞ ¼ Da

XN
j¼1

RjaϕjðtÞ; ðL2Þ

as done in the path-integral approach. In the two-site cavity
calculation, we keep track of various intermediate quantities
to order 1=

ffiffiffiffi
N

p
, leading to an expression for ΨϕðτÞ accurate

to leading order (order one), which we identify as Ψϕ
⋆ðτÞ.

To distinguish between different types of variables and
their indices, we use the following notation. Neurons are
indexed by i; j∈ f1;…; Ng and latent variables by
a; b∈ f1;…;Mg, as usual. For the cavity variables, we
introduce special indices: Neuronal cavity variables are
indexed by μ; ν∈ f0; 00g, while latent cavity variables are
indexed by α; β∈ f0̂; 0̂0g.

1. Neuronal cavity

We begin by introducing two neurons, x0ðtÞ and x00 ðtÞ.
The leading-order (1=

ffiffiffiffi
N

p
) effect on the latent variables is

δzaðtÞ ¼
Z

t
dt0

XM
b¼1

Szabðt1; t2ÞDb

X
μ∈ f0;00g

Rμbϕμðt0Þ; ðL3Þ

where Szabðt1; t2Þ is the response function of the latent
variables. The dynamic equations for the cavity neurons are

T½xμ�ðtÞ ¼ ημðtÞ þ
X

ν∈ f0;00g

Z
t
dt0Fμνðt1; t2Þϕνðt0Þ; ðL4Þ

where

ημðtÞ ¼
XM
a¼1

LμazaðtÞ; ðL5Þ

FIG. 11. Schematic of the two-site cavity approach for the
bipartite representation of the random-mode model. Left: neuron
cavity, considering the introduction of neurons x0ðtÞ and x00 ðtÞ.
Right: latent-variable cavity, considering the introduction of
latent variables z0̂ðtÞ and z0̂0 ðtÞ. The cavity pictures are coupled,
with averages from one appearing in self-consistent equations for
the other.
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Fμνðt1; t2Þ ¼
ffiffiffiffi
N

p XM
a;b¼1

LμaDbRνbS
z
abðt1; t2Þ: ðL6Þ

Defining the cavity-field time-average cross-covariance as

Cη
000 ðωÞ ¼

X
a;b

L0aL00bC
z
abðωÞ; ðL7Þ

we obtain the following expression for the cross-covariance
of the cavity units, up to order 1=

ffiffiffiffi
N

p
:

Cϕ
000 ðωÞ¼ jSϕ⋆ðωÞj2Cη

000 ðωÞ

þ 1ffiffiffiffi
N

p ½ðSϕ⋆ðωÞF000 ðωÞÞ�þSϕ⋆ðωÞF000ðωÞ�Cϕ
⋆ðωÞ:

ðL8Þ
Our goal is to compute the parameter

ψϕðωÞ ¼ NhCϕ
000 ðω1ÞCϕ

000 ðω2ÞiL;D;R; ðL9Þ

where h·iL;D;R denotes an average over L, D, and R. To
evaluate this, we need to square and disorder average
Eq. (L8). This requires us to consider several two-
frequency correlation functions, which we define as

ΓF000F000 ðωÞ ¼ hF000 ðω1ÞF000 ðω2ÞiL;D;R; ðL10Þ

ΓF�
000F000ðωÞ ¼ hF�

000 ðω1ÞF000ðω2ÞiL;D;R; ðL11Þ

ΓF�
000C

η

000
ðωÞ ¼ ffiffiffiffi

N
p hF�

000 ðω1ÞCη
000 ðω2ÞiL;D;R; ðL12Þ

ΓCη

000C
η

000
ðωÞ ¼ NhCη

000 ðω1ÞCη
000 ðω2ÞiL;D;R: ðL13Þ

These have all been scaled to be order one. We can evaluate
these Γ���ðωÞ functions due to the independence of the
couplings and dynamic variables in the expressions defin-
ing them, which is a consequence of the cavity construc-
tion. Of these, the only nonvanishing ones are

ΓCη

000C
η

000
ðωÞ ¼ αhCz

0̂ 0̂
ðω1ÞCz

0̂ 0̂
ðω2ÞiL;D;R

þ α2NhCz
0̂0̂0
ðω1ÞCz

0̂0̂0
ðω2ÞiL;D;R; ðL14Þ

ΓF000F000 ðωÞ ¼ αr2 þ α2NhD2
0̂0
Sz
0̂0̂0
ðω1ÞSz0̂0̂0 ðω2ÞiL;D;R;

ðL15Þ

where 0̂; 0̂0 denote the indices in the latent-variable cavity
picture.

2. Latent-variable cavity

We now introduce two new latent variables, z0̂ðtÞ and
z0̂0 ðtÞ. The leading-order (1=

ffiffiffiffi
N

p
) effect on the neurons is

δϕiðtÞ ¼
Z

t
dt0

XN
j¼1

Sϕijðt1; t2Þ
X

α∈ f0̂;0̂0g
Ljαzαðt0Þ; ðL16Þ

where Sϕijðt1; t2Þ is the response function of the neurons.
The dynamic equations for the cavity latent variables are

zαðtÞ¼Dα

	
γαðtÞþ

1ffiffiffiffi
N

p
X

β∈f0̂;0̂0g

Z
t
dt0Gαβðt1;t2Þzβðt0Þ



;

ðL17Þ

where

γαðtÞ ¼
XN
i¼1

RiαϕiðtÞ; ðL18Þ

Gαβðt1; t2Þ ¼
ffiffiffiffi
N

p XN
i;j¼1

RiαLjβS
ϕ
ijðt1; t2Þ: ðL19Þ

Defining the time-average cavity-field cross-covariance as

Cγ
0̂0̂0
ðωÞ ¼

XN
i;j¼1

Ri0̂Rj0̂0C
ϕ
ijðωÞ; ðL20Þ

we obtain the following expression for the cross-covariance
of the cavity latent variables up to order 1=

ffiffiffiffi
N

p
:

Cz
0̂0̂0
ðωÞ¼D0̂D0̂0C

γ
0̂0̂0
ðωÞ

þ 1ffiffiffiffi
N

p ½D0̂G
�
0̂0̂0
ðωÞCz

0̂00̂0
ðωÞþD0̂0G0̂00̂ðωÞCz

0̂ 0̂
ðωÞ�:

ðL21Þ

We aim to compute the parameter

ψ zðωÞ ¼ NhCz
0̂0̂0
ðω1ÞCz

0̂0̂0
ðω2ÞiL;D;R ðL22Þ

by squaring and disorder averaging Eq. (L21). This requires
us to consider several two-frequency correlation functions,
which we define as

ΓG0̂0̂0G0̂0̂0 ðωÞ ¼ hG0̂0̂0 ðω1ÞG0̂0̂0 ðω2Þi L;R;
DnfD

0̂
;D

0̂0 g
; ðL23Þ

ΓG�
0̂0̂0G0̂0 0̂ðωÞ ¼ hG�

0̂0̂0
ðω1ÞG0̂00̂ðω2Þi L;R;

DnfD
0̂
;D

0̂0 g
; ðL24Þ

ΓG�
0̂0̂0C

γ

0̂0̂0
ðωÞ ¼

ffiffiffiffi
N

p
hG�

0̂0̂0
ðω1ÞCγ

0̂0̂0
ðω2Þi L;R;

DnfD
0̂
;D

0̂0 g
; ðL25Þ

ΓCγ

0̂0̂0C
γ

0̂0̂0
ðωÞ ¼ NhCγ

0̂0̂0
ðω1ÞCγ

0̂0̂0
ðω2Þi L;R;

DnfD
0̂
;D

0̂0 g
: ðL26Þ

Again, we can evaluate these Γ���ðωÞ functions due to the
independence of the couplings and dynamic variables in the
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expressions defining them. The nonvanishing ones are

ΓCγ

0̂0̂0C
γ

0̂0̂0
ðωÞ¼Cϕ

⋆ðω1ÞCϕ
⋆ðω2ÞþNhCϕ

000 ðω1ÞCϕ
000 ðω2ÞiL;D;R;

ðL27Þ

ΓG0̂0̂0G0̂0̂0 ðωÞ ¼ Sϕ⋆ðω1ÞSϕ⋆ðω2Þ þ NhSϕ
000 ðω1ÞSϕ000 ðω2ÞiL;D;R;

ðL28Þ

where 0; 00 denote the indices in the neuronal cavity
picture.

3. Combining the two two-site cavity pictures

To combine the results from both two-site cavity
pictures, we use the following relations:

Cz
0̂ 0̂
ðωÞ ¼ D2

0̂
Cϕ
⋆ðωÞ; ðL29Þ

Sz
0̂0̂0
ðωÞ ¼ D0̂ffiffiffiffi

N
p G0̂0̂0 ðωÞ; ðL30Þ

Sϕ
000 ðωÞ ¼

1ffiffiffiffi
N

p ½Sϕ⋆ðωÞ�2F000 ðωÞ: ðL31Þ

Using these relations and the definitions of the Γ���ðωÞ
functions [Eqs. (L10)–(L13) and (L23)–(L26)], we obtain

ΓCη

000C
η

000
ðωÞ ¼ αr4C

ϕ
⋆ðω1ÞCϕ

⋆ðω2Þ þ α2ψ zðωÞ; ðL32Þ

ΓF000F000 ðωÞ ¼ αr2½1þ αr2ΓG0̂0̂0G0̂0̂0 ðωÞ�; ðL33Þ

ΓCγ

0̂0̂0C
γ

0̂0̂0
ðωÞ ¼ Cϕ

⋆ðω1ÞCϕ
⋆ðω2Þ þ ψϕðωÞ; ðL34Þ

ΓG0̂0̂0G0̂0̂0 ðωÞ ¼ Sϕ⋆ðω1ÞSϕ⋆ðω2Þ
× ½1þ Sϕ⋆ðω1ÞSϕ⋆ðω2ÞΓF000F000 ðωÞ�: ðL35Þ

We solve Eqs. (L33) and (L35) simultaneously, yielding

ΓF000F000 ðωÞ ¼
αr2

1 − αr2S
ϕ
⋆ðω1ÞSϕ⋆ðω2Þ

; ðL36Þ

ΓG0̂0̂0G0̂0̂0 ðωÞ ¼
Sϕ⋆ðω1ÞSϕ⋆ðω2Þ

1 − αr2S
ϕ
⋆ðω1ÞSϕ⋆ðω2Þ

: ðL37Þ

With these solutions, we express ψ z
⋆ðωÞ and ψϕ

⋆ðωÞ in
terms of the Γ���ðωÞ functions. Switching to frequency-
suppressed notation,

ψ z
⋆ ¼ r22ΓCγ

0̂0̂0C
γ

0̂0̂0
þ r2r4ðΓG0̂0̂0G0̂0̂0 þ H:c:ÞCϕ

12; ðL38Þ

ψϕ
⋆ ¼ jSϕ12j2ΓCη

000C
η

000
þ ðΓF000F000S

ϕ
12 þ H:c:ÞCϕ

12: ðL39Þ

Now, we substitute Eq. (L38) into Eq. (L39). Using
Ψϕ

⋆ ¼ ψϕ
⋆ þ Cϕ

12, we obtain

Ψϕ
⋆ ¼ jg2effSϕ12j2

	
Ψϕ

⋆ þ 1

αPRD

1 − jg2effSϕ12j2
j1 − g2effS

ϕ
12j2

Cϕ
12



þ 1 − jg2effSϕ12j2
j1 − g2effS

ϕ
12j2

Cϕ
12; ðL40Þ

where we used the previously defined quantities g2eff ¼ αr2
and PRD ¼ r22=r4. Equation (L40) can be solved for Ψϕ

⋆,
yielding

Ψϕ
⋆ ¼ 1þ 1

αPRD jg2effSϕ12j2
j1 − g2effS

ϕ
12j2

Cϕ
12: ðL41Þ

This result is identical to Eq. (38) derived using the path-
integral approach, demonstrating the consistency between
the two methods.

APPENDIX M: NUMERICAL DETAILS

1. Numerics for theory

To validate the theory, we used networks with dynamics
defined by T½x�ðtÞ ¼ ð1þ ∂tÞxðtÞ and with nonlinearity
ϕðxÞ ¼ erfð ffiffiffi

π
p

x=2Þ. For all connectivity models, except
those with structured L − R overlaps (Sec. VII), the single-
site two-point functions Cϕ

⋆ðτÞ and Sϕ⋆ðτÞ depend only on
geff and can be numerically calculated as in i.i.d. networks
(see, e.g., Refs. [10,105]). In summary:
(1) Since ηðtÞ is Gaussian, so is xðtÞ for this linear form

of T½·�, allowing us to write Cϕ
⋆ðτÞ in terms of

Gaussian integrals over xðtÞ and xðtþ τÞ, which
have marginal variance Cϕ

⋆ð0Þ and covariance
Cϕ
⋆ðτÞ. Because of our choice of ϕðxÞ, this expres-

sion simplifies to

Cϕ
⋆ðτÞ¼

2

π
tan−1

264 Cx
⋆ðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCx
⋆ð0Þþ 2

πÞ2−Cx
⋆ðτÞ2

q
375: ðM1Þ

(2) Squaring the single-site picture gives a second-
order ordinary differential equation (ODE) ∂2τCx

⋆ðτÞ ¼
Cx
⋆ðτÞ − g2effC

ϕ
⋆ðτÞ. Since the rhs depends only

on Cx
⋆ðτÞ and Cx

⋆ð0Þ, we can consider it to be the
negative derivative −∂V=∂Cx

⋆ðτÞ of a potential
VðCx

⋆ðτÞ; Cx
⋆ð0ÞÞ with an explicit dependence on

the initial condition Cx
⋆ð0Þ.

(3) The rhs is integrated with respect toCx
⋆ðτÞ to provide

an expression for VðCx
⋆ðτÞ; Cx

⋆ð0ÞÞ, which due to
our choice of ϕðxÞ simplifies to
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VðCx
⋆ðτÞ; Cx

⋆ð0ÞÞ ¼ −
1

2
Cx
⋆ðτÞ2 þ g2eff

	
2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Cx
⋆ð0Þ þ

2

π

�
2

− Cx
⋆ðτÞ2

s
þ Cx

⋆ðτÞCϕ
⋆ðτÞ



: ðM2Þ

(4) Restricting to solutions with Cx
⋆ðτÞ → 0 as τ → ∞

and ∂τCx
⋆ðτÞjτ¼0 ¼ 0, enforcing conservation of

energy gives VðCx
⋆ð0Þ; Cx

⋆ð0ÞÞ ¼ Vð0; Cx
⋆ð0ÞÞ,

which can be solved for Cx
⋆ð0Þ by numerical root

finding.
(5) Finally, Euler integration of the ½Cx

⋆ðτÞ; ∂τCx
⋆ðτÞ�

dynamics with these initial conditions gives its full
time course, along with Cϕ

⋆ðτÞ via Eq. (M1).
We integrated the Newtonian ODE from τ ¼ 0 to τmax ¼

200 with step size dτ ¼ 0.025. We then use an FFT to
obtain the frequency-space representation. The frequency-
space representation of the response function Sϕ⋆ðωÞ was
computed directly as

Sϕ⋆ðωÞ ¼
hϕ0i⋆
1þ iω

; ðM3Þ

with hϕ0i⋆ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðπ=2ÞCx

⋆ð0Þ
p

. Various expressions
for Ψa

⋆ðω1;ω2Þ were then computed in frequency space
before transforming back to the time domain by a two-
dimensional inverse FFT.
For structured L-R overlaps, the Oð1Þ self-coupling in

the single-site process makes xðtÞ non-Gaussian, prevent-
ing the use of Gaussian integrals in the DMFT solution. We
therefore obtain the solution via standard numerical meth-
ods, enforcing self-consistency among the ηxðtÞ correlation
function Q⋆ðτÞ, the self-coupling kernel R⋆ðτÞ, the
response function Sϕ⋆ðτÞ, and the ϕðtÞ correlation function
Cϕ
⋆ðτÞ. In summary:
(1) Seed values for kernels are set as Cϕ

0 ðτÞ ¼
exp½−ðτ=15Þ2� þ 10−4δðτÞ and Sϕ0 ðτÞ ¼ 0.

(2) Q0ðτÞ and R0ðτÞ are computed in Fourier space
using the current values of Cϕ

0 ðτÞ and Sϕ0 ðτÞ via
Eq. (49), with the average taken over ðD; ρÞ.

(3) A set of Nsample ¼ 104 instances of ηx are sampled
according to the Gaussian process kernel Q0ðτÞ by
standard spectral methods.

(4) Each of Nsample single-site processes xsðtÞ is Euler
integrated according to Eq. (47a) with the input ηxsðtÞ
and self-feedback by the convolution between R0ðτÞ
and ϕ(xsðtÞ).

(5) These time series ϕ(xsðtÞ) and ηxsðtÞ are used to
compute empirical values ðCϕ

1 ðτÞ; Sϕ1 ðτÞÞ for the auto-
covariance and response. The latter is computed by the
Furutsu-Novikov theorem: SϕðωÞ ¼ CϕηðωÞ=CηðωÞ.
The numerator is estimated using these time series,
while CηðωÞ is simply Q0ðωÞ.

(6) After Niter ¼ 300 repetitions of steps (1)–(5) with
smoothed updates

Cϕ
mðτÞ ← 0.2Cϕ

m−1ðτÞ þ 0.8Cϕ
mðτÞ; ðM4Þ

SϕmðτÞ ← 0.2Sϕm−1ðτÞ þ 0.8SϕmðτÞ ðM5Þ

as new seed values for the upcoming mth iteration,
the final numerical estimates forCϕ

⋆ðτÞ and Sϕ⋆ðτÞ are
computed as the averages over the last 50 iterations.

We used a temporal discretization τmax ¼ 120, dτ ¼ 0.04.
With these quantities, the various components of Eq. (51)
and the expression for Ψϕ

⋆ are straightforward to compute.
We took h·iD;ρ averages in this case by averaging over every
other discrete value of Da and ρa.

2. Simulation details

Each network was integrated via Runge-Kutta with
dt ¼ 0.05. The empirical lagged covariance matrix was
computed by averaging over Nloop individual covariance
estimates, each of which is based on T ¼ 2000 discrete,

evenly spaced time samples t
iloop
k , with t

iloop
k − t

iloop
k−1 ¼ 1,

dCϕ
ijðτÞ ¼

�
1

T − 1

XT
k¼1

ϕiðtiloopk Þϕjðtiloopk − τÞ
�Nloop

iloop¼1

: ðM6Þ

The value of Nloop varied but was generally ≥ 50 and
always chosen to ensure saturated dimension values, i.e.,
TNloop ≫ N. Specific quantities of interest, such as PRϕ or
Ψϕðτ; 0Þ, were computed using this estimate.
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