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Abstract

Statistical-physics calculations in machine learning and theoretical neuroscience often
involve lengthy derivations that obscure physical interpretation. Here, we give concise,
non-replica derivations of several key results and highlight their underlying similarities.
In particular, using a cavity approach, we analyze three high-dimensional learning prob-
lems: perceptron classification of points, perceptron classification of manifolds, and ker-
nel ridge regression. These problems share a common structure—a bipartite system of
interacting feature and datum variables—enabling a unified analysis. Furthermore, for
perceptron-capacity problems, we identify a symmetry that allows derivation of correct
capacities through a naïve method.
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1 Introduction

Tools from statistical physics have elucidated important properties of artificial and biologi-
cal neural networks [1–3] such as storage-capacity limits [4–8], generalization characteris-
tics [9–11], and network dynamics [12–14]. The replica method has been particularly valu-
able for deriving exact results in learning problems where both the data dimension and sample
size approach infinity with a fixed ratio. However, replica calculations often involve complex
derivations that can obscure the underlying physics and potentially limit their adoption in the
machine-learning and theoretical-neuroscience communities.

Here, we show that derivations for several high-dimensional convex learning problems
can be substantially simplified and unified. Specifically, we give concise derivations using the
cavity method, which offers a more intuitive alternative to the replica method. In each section’s
Background, we contextualize these calculations within existing literature, including previous
cavity approaches. Notably, we focus on solutions of optimality conditions given random data
rather than computing full partition functions or solution-space volumes. These derivations
should make generalization to variants of these problems easier. This approach, sometimes
called the zero-temperature cavity method [15], has been applied previously, including to
problems with a bipartite structure [16,17], which will be of interest to us (see below).

We illustrate this unified cavity approach through three distinct problems. First, we revisit
Gardner’s calculation of perceptron capacity [5], the maximum number of randomly chosen
points that can be linearly separated with a fixed margin. This seminal result connected sta-
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Figure 1: Bipartite structure and cavity analysis of three high-dimensional learning
problems. Each panel illustrates the interaction between feature variables (top) and
datum variables (bottom), connected by random couplings (arrows). Left: Gard-
ner capacity problem with weight variables wi interacting with Lagrange multipli-
ers λµ through random data components xµi . Middle: manifold capacity problem
with weights wi interacting with products of Lagrange multipliers and anchor points
(“vector-Lagrange multipliers”) λµsµ through random (D + 1)-dimensional embed-
ding vectors uµi . Right: kernel ridge regression with eigenbasis errors ∆i interacting
with prediction errors ϵµ through random eigenfunction components φµi . In each
case, the cavity method introduces new variables (right side of each panel) while
analyzing perturbations to the existing unperturbed system (left side). Thick arrows
indicate the primary couplings in the unperturbed system and thin arrows show the
additional couplings introduced for the cavity variables.

tistical mechanics to learning theory and laid a mathematical foundation for analyzing linear
separability in high-dimensional spaces. Second, we investigate perceptron classification of
manifolds [7, 8], where each input comprises a structured manifold of points rather than a
single point. This extension captures both the geometric structure of real data and the fact
that the outputs of certain neural circuits and deep-learning systems must be invariant to such
structure [18]. Finally, we analyze kernel ridge regression, a supervised learning method that
optimizes the balance between prediction accuracy and function complexity through regular-
ization [9,10]. This analysis provides insights into deep-learning systems through connections
between neural networks and kernel methods [19].

While these problems appear distinct—involving points versus manifolds, classification
versus regression, and so on—we show that they share a bipartite structure of interacting
feature and datum variables, enabling a unified analysis (Fig. 1). Moreover, for perceptron-
capacity problems, we identify a symmetry that enables the derivation of correct capacities
through a naïve method requiring only a couple of lines of algebra.

These derivations have natural extensions to account for correlation structure in data,
e.g., patterns with correlated features or manifolds with correlated orientations. The bipartite
structure we consider is also exemplified by architectures including Hopfield networks and
their “modern” counterparts. This approach can also be applied to time-dependent problems to
derive dynamical mean-field theory equations. We describe these extensions in the Conclusion.

2 Classic Gardner problem

2.1 Background

The capacity of a neural system refers to the maximum amount of information it can reliably
store, process, or recall through configuration of its internal degrees of freedom, e.g., synaptic
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weights. The capacity of a perceptron for classifying random points with a margin was first
calculated by Gardner [5]; the zero-margin case was presented by Cover two decades prior
[20]. Here “capacity” refers to the number of randomly sampled N -dimensional points, with
random binary labels, that can be linearly classified with high probability (we state the problem
precisely below). Gardner’s insight was to analyze the volume of normalized weight vectors
capable of correctly separating the random points. For large N , the normalized logarithm of
this volume takes a consistent, order-one value across data realizations, i.e., it is self-averaging.
Using the replica method, Gardner computed the average of this log-volume over the data
distribution to determine the critical capacity as a function of margin.

Further work by Gardner used an energy function counting the number of violations of the
margin constraint [21]. This approach used the replica method to analyze the data-averaged
log-partition function, enabling calculation of ground-state properties such as the minimum
number of classification errors for a given margin and number of data. Mézard [6] then showed
how to compute this partition function using a cavity approach. Most recently, Agoritsas et
al. [22] presented a cavity method for the dynamics of perceptron learning.

The calculation presented here uses a cavity method, but differs from [6] in two ways.
First, we analyze solutions of the Karush-Kuhn-Tucker (KKT) optimality conditions rather than
computing a full partition function that would allow for analysis of classifier errors and finite-
temperature effects. Second, we explicitly introduce a bipartite structure involving interacting
feature and datum variables (weights and Lagrange multipliers, respectively). Both of these
aspects simplify the calculation, and the latter reveals shared structure with other problems.

2.2 Problem formulation

The data in the problem comprise P points, each represented by an N -dimensional vector
with components xµi , where i = 1, . . . , N indexes vector components and µ= 1, . . . , P indexes
points. Each point has a binary label yµ ∈ {−1,+1}. The perceptron must find a weight vector
with components wi that correctly classifies all points. We take this to mean that, for all µ,

yµ
N
∑

i=1

wi x
µ
i ≥ 1 . (1)

For convenience, we define a local field hµ as

hµ = yµ
N
∑

i=1

wi x
µ
i − 1 , (2)

which lets us write the classification condition as hµ ≥ 0.
A linear classifier’s margin, given by the inverse weight-vector norm,

margin=
1

Ç

∑N
i=1 w2

i

, (3)

is the distance between the homogeneous decision hyperplane, defined by
∑N

i=1 wi x i = 0, and
the affine hyperplanes beyond which points are correctly classified, defined by

∑N
i=1 wi x i=±1.

A large margin promotes better generalization by making the classifier robust to data pertur-
bations. Support vector machines maximize this margin (equivalently, minimize the weight-
vector norm) while maintaining correct classification through the convex optimization problem

minimize
1
2

N
∑

i=1

w2
i , subject to hµ ≥ 0 for all µ . (4)
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The corresponding Lagrangian is

L= 1
2

N
∑

i=1

w2
i −

P
∑

µ=1

λµhµ , (5)

where λµ are Lagrange multipliers enforcing correct classification. The optimal solution sat-
isfies the KKT conditions,

wi =
P
∑

µ=1

λµ yµxµi (stationarity, dL/dwi = 0) , (6)

hµ ≥ 0 (primal feasibility) , (7)

λµ ≥ 0 (dual feasibility) , (8)

λµhµ = 0 (complementary slackness) . (9)

To answer the Gardner capacity problem, we fix the weight-vector norm
Ç

∑N
i=1w2

i =
p

N/κ,
where κ (technically, κ/

p
N) is the margin, and take the limit where both the input dimension

N and the number of points P approach infinity while maintaining a fixed ratio, given by

α=
P
N

. (10)

Taking this limit while enforcing the KKT conditions yields a constraint relating α to κ, where α
represents the maximum number of points, normalized by dimension, that can be linearly clas-
sified with margin κ (i.e., the critical capacity). To generate an infinite number of points, and
to obtain results that do not depend on the particular data realization, we assume a random
process that generates the points, which we now describe.

2.3 Random-data assumption

We assume that the data components xµi are independent and identically distributed (i.i.d.).
In particular, we assume first- and second-order statistics given by




xµi
�

= 0 , (11)
¬

xµi xνj
¶

=
1
N
δµνδi j . (12)

Throughout, we use 〈· · ·〉 to denote an average over the data distribution. Without loss of
generality, we set yµ = 1 for all µ.1 The detailed form of the single-component distribution
P(xµi ) does not enter into the calculation due to the central limit theorem.

2.4 Naïve mean-field analysis

We begin with a concise “naïve mean-field” analysis that yields the correct capacity despite
incorrect independence assumptions. Subsequently, by way of comparison to a cavity analysis,
we will show that this naïve approach is guaranteed to yield the correct capacity due to a
symmetry in the problem description.

1The preservation of generality is particularly obvious if the symmetry property P(xµi ) = P(−xµi ) holds: in this
case, yµxµi has the same distribution as xµi , and the problem depends on yµ only through yµxµi . Even without
this symmetry property, no loss of generality is incurred since the data and labels are sampled independently and
(yµ)2 = 1.
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Starting from the stationarity condition (Eq. 6), we incorrectly assume statistical indepen-
dence between Lagrange multipliers λµ and data xµi , yielding




w2
i

�

=
P
∑

µ,ν=1




xµi xνi
�

︸ ︷︷ ︸

=δµν/N

〈λµλν〉= α



(λµ)2
�

. (13)

From weight-vector normalization



w2
i

�

= 1/κ2, we obtain a formula for the capacity,

α−1 = κ2



(λµ)2
�

. (14)

Next, by substituting the stationarity condition (Eq. 6) into the definition of the local field
(Eq. 2), we obtain

hµ =
P
∑

ν=1

N
∑

i=1

xµi xνi λ
ν − 1 . (15)

Separating diagonal (µ= ν) and off-diagonal (µ ̸= ν) terms gives

hµ =

� N
∑

i=1

(xµi )
2

�

λµ +
∑

ν̸=µ

N
∑

i=1

xµi xνi λ
ν − 1 . (16)

The square-bracket term is unity at large N due to the choice of data variance (Eq. 12).
Under the incorrect independence assumption, the second term, which we denote by
ηµ =

∑

ν̸=µ

∑N
i=1 xµi xνi λ

ν, is Gaussian (by the central limit theorem) with

〈ηµ〉=
∑

ν̸=µ

N
∑

i=1




xµi xνi
�

︸ ︷︷ ︸

=0

〈λν〉= 0 , (17)




(ηµ)2
�

=
∑

ν,ρ ̸=µ

N
∑

i, j=1

¬

xµi xνi xµj xρj
¶

︸ ︷︷ ︸

=δνρδi j/N2

〈λνλρ〉= α



(λµ)2
�

. (18)

Thus, Eq. 16 becomes
hµ = λµ +ηµ − 1 , (19)

where ηµ ∼ N (0,1/κ2) using Eq. 14. We now obtain an expression for λµ in terms of ηµ

by applying the three as-yet unused KKT conditions. Rearranging Eq. 19 and applying dual
feasibility (Eq. 8) gives λµ = hµ + 1 − ηµ ≥ 0. If λµ > 0, complementary slackness (Eq. 9)
requires hµ = 0, and thus λµ = 1−ηµ. Alternatively, if λµ = 0, from primal feasibility (Eq. 7),
we have 1−ηµ ≤ 0. Combining these conditions yields

λµ = [1−ηµ]+ , (20)

where [x]+ = max(0, x). Inserting this expression for λµ into the capacity formula (Eq. 14)
gives

α−1 =



[κ− z]2+
�

z∼N (0,1) , (21)

where z = κηµ. This is the correct perceptron capacity for random points, as derived by
Gardner.

While we obtain the correct final result, there is an inconsistency lurking in this naïve
calculation that we now discuss.
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2.5 Inconsistency in the naïve mean-field analysis

The naïve analysis used the relation



w2
i

�

= α



(λµ)2
�

(Eq. 13), combined with weight-vector
normalization, to derive a formula for the capacity, α−1 = κ2




(λµ)2
�

(Eq. 14). However,
computing the normalized L2-norm directly through the KKT conditions without disorder av-
eraging gives

1
N

N
∑

i=1

w2
i =

1
N

N
∑

i=1

wi

P
∑

µ=1

λµxµi (22)

=
1
N

P
∑

µ=1

(hµ + 1)λµ (23)

= α 〈λµ〉 , (24)

where we used stationarity (Eq. 6) in Eq. 22, the local-field definition (Eq. 2) in Eq. 23, and
complementary slackness (Eq. 9) in Eq. 24. Weight-vector normalization therefore yields a
formula for the capacity,

α−1 = κ2 〈λµ〉 , (25)

contradicting Eq. 14. This inconsistency points to the fact that the naïve analysis, despite
yielding the correct capacity, does not account for correlations between the dynamic variables
and quenched disorder (this terminology is described below). In the next section, we describe a
bipartite cavity analysis that, while only slightly more involved than the naïve method, properly
handles these correlations and resolves this inconsistency.

2.6 Bipartite cavity analysis

The Gardner problem involves two classes of variables. The first is the quenched disorder, given
by the data xµi . Here, “quenched” means that these variables are randomly drawn, then remain
fixed. The second class is dynamic variables, given by the weights wi and Lagrange multipliers
λµ, which adjust to satisfy the KKT conditions. While the naïve mean-field approach neglects
the correlations between these two classes of variables, the cavity method provides a systematic
way to account for their interactions. In general, the presence of correlations between the
quenched disorder and dynamic variables is why techniques like the replica or cavity methods
are required rather than naïve averaging-based analyses.

In addition to this general structure, the dynamic variables in the Gardner problem have
a specific bipartite structure involving feature variables wi (noting that i = 1, . . . , N indexes
features) and datum variables λµ (noting that µ= 1, . . . , P indexes data) that interact through
quenched random data xµi , which serve as couplings (Fig. 1, “Gardner capacity”). We describe
this bipartite interaction using the equations

hµ =
N
∑

i=1

xµi wi − 1+ Iµ , (26)

wi =
P
∑

µ=1

xµi λ
µ + Ii , (27)

where Iµ and Ii are infinitesimal source terms that we have added for computing response
functions. The system description is completed by the remaining three KKT conditions (Eqs. 7–
9). When the source terms are zero, the quenched disorder, xµi , uniquely determines the
dynamic variables, wi and λµ, assuming that the subset of points xµi that are supporting, i.e.,
have λµ > 0, are in general position. For random points, the probability of these supporting
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points not being in general position is zero. We assume that this uniqueness property holds in
the presence of the infinitesimal source terms.

The bipartite cavity method involves performing the following steps for both feature and
datum variables:

1. Start with an unperturbed system: dynamic variables, wi and λµ, for a given realization
of quenched disorder, xµi .

2. Introduce a new “cavity” dynamic variable that perturbs the existing dynamic variables.
For features, this is a new weight w0; for data, a new Lagrange multiplier λ0. This
requires introducing new quenched random variables, xµ0 or x0

i , respectively, that couple
the cavity variable to the existing variables.

3. Write an equation describing how this cavity variable responds to the other variables,
accounting for how those variables were perturbed by the cavity variable’s introduction.

4. Solve the resulting cavity equations self-consistently by averaging over the quenched
disorder.

The bipartite structure simplifies this analysis: when introducing a cavity dynamic variable
(feature or datum), we only need to compute its effect on the opposite set of dynamic variables
(datum or feature, respectively). This is because only the opposite set provides input to the
cavity variable in step 3.

We repeat these steps separately for both the feature-cavity and data-cavity cases. This
produces two complementary cavity pictures, one for each set of dynamic variables. The self-
consistent equations in each picture depend on statistical averages in the other picture.

We now implement these steps for the Gardner problem.

2.6.1 Feature cavity

We begin with unperturbed dynamic variables wi and λµ, then introduce a new weight w0,
with quenched random variables xµ0 that connect it to the existing Lagrange multipliers λµ.
Since the couplings are weak (xµi ∼ 1/

p
N), introducing w0 delivers small perturbations to

the existing Lagrange multipliers, given by

δλµ =
P
∑

ν=1

dλµ

dIν
xν0 w0 . (28)

One could include higher-order terms, the next of which would be smaller than the above term
by a factor of 1/

p
N and given by

∑P
ν,ρ=1

dλµ
dIνdIρ xν0 xρ0 w2

0. Tracking such higher-order terms is
typically not necessary.

Upon introduction of w0, there is also a perturbation to wi for i = 1, . . . , N , however these
perturbations do not enter directly into the expression for w0 due to the bipartite structure of
the interactions. In particular, given the perturbation Eq. 28 above, w0 follows

w0 =
P
∑

µ=1

xµ0 (λ
µ +δλµ) + I0 (29)

=
P
∑

µ=1

xµ0λ
µ +

P
∑

µ,ν=1

xµ0 xν0
dλµ

dIν
w0 + I0 (30)

= η0 + F00w0 + I0 , (31)
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where we define the cavity field η0 and self-coupling F00 as

η0 =
P
∑

µ=1

xµ0λ
µ , (32)

F00 =
P
∑

µ,ν=1

xµ0 xν0
dλµ

dIν
. (33)

The cavity construction ensures that, in these expressions, the quenched disorder, xµ0 , and dy-
namic variables, λµ and dλµ/dIν, are independent of each other. This solves the issue in the
naïve analysis and allows for the calculation of disorder-averaged statistics of these expres-
sions. Applying the central limit theorem, η0 is Gaussian with

〈η0〉= 0 , (34)



η2
0

�

= α



(λµ)2
�

. (35)

Meanwhile, the self-coupling F00 is order-one and self-averaging with mean

〈F00〉= αSλ , (36)

where Sλ = 〈dλµ/dIµ〉 is the average on-diagonal Lagrange-multiplier response. By self-
averaging, we mean that the fluctuations of F00 (defined by Eq. 33) around itsO(1) expectation
(given by Eq. 36) are O(1/

p
N), as can be verified. Next, from Eq. 31, we obtain

w0 = η0 +αSλw0 + I0 , (37)

leading to the weight response function

Sw =
dw0

dI0
=

1
1−αSλ

. (38)

Dropping the source term I0, we have

w0 = Swη0 . (39)

Thus, weight-vector normalization



w2
0

�

= 1/κ2 yields the capacity formula

α−1 = κ2(Sw)2



(λµ)2
�

. (40)

To complete the calculation, we perform the same analysis with a datum cavity variable λ0.
This will allow us to determine




(λµ)2
�

=



(λ0)2
�

.

2.6.2 Datum cavity

We begin with unperturbed dynamic variables wi and λµ, then introduce a new Lagrange
multiplier λ0 with quenched random variables x0

i that connect it to the existing weights wi .
As before, since the couplings are weak, introducing λ0 delivers small perturbations to the
existing weights,

δwi =
N
∑

j=1

dwi

dI j
x0

j λ
0 . (41)
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The bipartite structure implies that the perturbations to other Lagrange multipliers λµ with
µ= 1, . . . , P do not enter directly into the expression for h0, which reads

h0 =
N
∑

i=1

x0
i (wi +δwi)− 1+ I0 (42)

=
N
∑

i=1

x0
i wi +

N
∑

i, j=1

x0
i x0

j
dwi

dI j
λ0 − 1+ I0 (43)

= η0 + F00λ0 − 1+ I0 , (44)

where we define the cavity field η0 and self-coupling F00 as

η0 =
N
∑

i=1

x0
i wi , (45)

F00 =
N
∑

i, j=1

x0
i x0

j
dwi

dI j
. (46)

The cavity construction ensures that, in these expressions, the quenched disorder, x0
i , and dy-

namic variables, wi and dwi/dI j , are independent of each other, allowing for calculation of
disorder-averaged statistics of these expressions. Applying the central limit theorem, η0 is
Gaussian with




η0
�

= 0 , (47)



(η0)2
�

=



w2
i

�

=
1
κ2

. (48)

Meanwhile, the self-coupling F00 is order-one and self-averaging with mean



F00
�

= Sw . (49)

From Eq. 44, we obtain
h0 = η0 + Swλ0 − 1+ I0 . (50)

Using the same logic based on the KKT conditions as in the naïve analysis, the cavity Lagrange
multiplier follows

λ0 =
[1−η0 − I0]+

Sw
. (51)

Dropping the source term I0 and inserting this expression into the capacity formula (Eq. 40),
we obtain

α−1 = κ2(Sw)2
�

[1−η0]2+
(Sw)2

�

. (52)

The factors of (Sw)2 cancel, yielding the Gardner result (Eq. 21).

2.7 Symmetry in the problem

Clearly, the success of the naïve mean-field analysis relied on the fortuitous cancellation of the
factors (Sw)2. Why did this happen?

Consider generalizing the weight equation (Eq. 27) to

wi = A

 

P
∑

µ=1

xµi λ
µ + Ii

!

, (53)
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where A > 0 is a scalar. For any max-margin solution with support-vector coefficients λµ at
A = 1, there exists a solution with λµ

′
= λµ/A for any positive A. Thus A does not affect

capacity, though it scales the linear response function Sw. The capacity result therefore can-
not depend on Sw, and one is free to assume for it any positive value, for instance Sw = 1.
This symmetry in the bipartite description of the problem explains why the naïve mean-field
calculation succeeded: it implicitly assumed Sw = 1 when calculating both




w2
i

�

and hµ.

2.8 Computing the response functions

While the capacity calculation is independent of Sw, this response function is required to deter-
mine other important quantities, such as the distribution of Lagrange multipliers. Moreover,
computing Sw allows us to verify that the cavity method resolves the inconsistency found in
the naïve analysis.

From the cavity solution for λ0 (Eq. 51), we obtain the Lagrange-multiplier response

Sλ = −
φ0(κ)

Sw
, (54)

where we define the function

φn(κ) =

∫ κ

−∞
Dz(κ− z)n , (55)

with Dz = (2π)−1/2 exp
�

−z2/2
�

denoting Gaussian measure. Combining this with the weight
response (Eq. 38) yields

Sλ = −
φ0(κ)

1−αφ0(κ)
, (56)

Sw = 1−αφ0(κ) . (57)

Consulting Eq. 51, φ0(κ) is the probability for a Lagrange multiplier to be nonzero. Thus, the
weight response Sw (Eq. 57) has a nice interpretation:

Sw = 1−
number of supporting points

N
. (58)

This implies that the response to adding a new datum is strongest when there are few support-
ing points. This makes intuitive sense: with fewer supporting points, each point has a greater
influence on the weight vector. As the number of supporting points increases, the influence of
each individual point diminishes.

2.9 Resolving the inconsistency

Having derived the response functions, we now show that the inconsistency in the naïve cal-
culation is resolved. Recall the two formulas for the capacity:

α−1 = κ2(Sw)2



(λµ)2
�

= κ2 〈λµ〉 , (59)

from Eqs. 13 and 25. These expressions appeared contradictory only when we naïvely and
incorrectly assumed Sw = 1. We now show that both expressions are consistent when using
the correct value of Sw = 1−αφ0(κ) derived from the cavity analysis.

Substituting the expression for λ0 from Eq. 51 into Eq. 59, we obtain

α−1 = φ2(κ) =
�

1−
φ0(κ)
φ2(κ)

�−1

κφ1(κ) , (60)
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which can be rearranged to yield the identity

φ2(κ) = φ0(κ) +κφ1(κ) . (61)

We can verify this identity through direct calculation: the left-hand side can be written as

φ2(κ) = −
∫ κ

−∞
Dzz(κ− z) +κφ1(κ) (62)

=

∫ κ

−∞
Dz +κφ1(κ) (63)

= φ0(κ) + κφ1(κ) , (64)

where we used integration by parts in the second step.

3 Manifold capacity

3.1 Background

The Gardner problem studies the separability of random points, but real-world data typically
exhibit complex geometric structure. For example, images of an object captured from different
angles form a continuous manifold in pixel space. More generally, inputs that correspond to
the same output (forming a “class”) create structured manifolds, either in the input space
or in some transformed representation. Certain neural circuits (e.g., sensory systems) and
artificial neural systems (e.g., deep-network classifiers) must generate outputs that remain
invariant to such input transformations. The manifold capacity problem extends Gardner’s
analysis from discrete points to continuous manifolds, addressing this reality. Chung et al. [8]
first solved this manifold capacity problem, building on their earlier work on specific manifold
geometries [7]. While their paper outlined the capacity calculation using a naïve mean-field
approach, we present both a detailed naïve analysis and a complete bipartite cavity analysis.
As in the Gardner case, the naïve calculation yields the correct capacity due to the presence of
a symmetry in the problem description.

3.2 Problem formulation

Consider a dataset of P manifolds, each with a base shape S ⊆ RD+1 and binary label
yµ ∈ {−1,+1}. Each manifold is embedded in N -dimensional space through random iso-
metric embeddings indexed by µ = 1, . . . , P. The embedding matrices have components uµia,
where i = 1, . . . , N indexes features and a = 1, . . . , D + 1 indexes the manifold subspace di-
mension. We denote the i-th row of this embedding matrix by uµi , reserving bold notation for
(D+1)-dimensional vectors and matrices. A point with intrinsic coordinates s ∈ S on manifold
µ has N -dimensional coordinates given by

xµi (s) =
D+1
∑

a=1

uµiasa = (u
µ
i )

T s . (65)

We assume that the origin is not in the convex hull of S, ensuring that linear separability of the
manifolds is possible. A convenient way to parameterize the base shape, though not required
for the present analysis, is to use the last coordinate sD+1 to specify the displacement from
the origin, with the remaining coordinates (s1, . . . , sD) specifying the shape of the manifold
in a D-dimensional subspace orthogonal to the displacement (e.g., a sphere with radius R a
distance d from the origin would be specified by sD+1 = d, s2

1 + . . .+ s2
D = R2). Since we will
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consider linear classification of manifolds, the problem is only sensitive to the convex hull of
each manifold, and thus S can be replaced with the convex hull of S without loss of generality.

The classification task requires finding a weight vector with components wi that separates
manifolds into their assigned classes. Specifically, every point xµi (s) on manifold µmust satisfy

yµ
N
∑

i=1

wi x
µ
i (s)≥ 1 . (66)

To analyze this condition more compactly, we introduce the vectors

Vµ = yµ
N
∑

i=1

wiu
µ
i . (67)

This allows us to express the classification condition as (Vµ)T s ≥ 1 for all s ∈ S. We can further
simplify this using the support function of S, a fundamental concept in convex geometry:2

gS(y) =min
s∈S

y T s . (68)

This leads to a manifold analogue of the local field,

hµ = gS(V
µ)− 1 . (69)

The classification condition then becomes simply hµ ≥ 0, as in the Gardner case.
As before, we formulate an optimization problem that minimizes the weight-vector norm

subject to correct classification. The Lagrangian takes the same form as Eq. 5, with Lagrange
multipliers λµ multiplying hµ. To write down the KKT conditions, we introduce the concept of
an anchor point for each manifold, defined by the gradient of the support function:

sµ =∇gS(V
µ) . (70)

A key fact from convex geometry is that the gradient of this support function gives the “arg-
min,” over the manifold, of the inner product with Vµ,

sµ = arg-min
s∈S

(Vµ)T s . (71)

Thus, the anchor point sµ is the intrinsic coordinate of the point on manifold µ that is closest
to the decision boundary. With this definition, the KKT stationarity condition (dL/dwi = 0)
reads

wi =
P
∑

µ=1

λµ yµ(uµi )
T sµ , (72)

with the remaining conditions (primal feasibility, dual feasibility, and complementary slack-
ness) identical to Eqs. 7–9 from the Gardner case.

3.3 Random-embedding assumption

In place of random points, the manifold capacity problem assumes random embeddings of the
manifolds. These embedding components uµia are i.i.d. with




uµia
�

= 0 , (73)
¬

uµiauνj b
¶

=
1
N
δµνδi jδab . (74)

This scaling ensures that each manifold’s embedding is isometric for N →∞ and finite D. As
in the Gardner case, we set yµ = 1 for all µ without loss of generality. The precise form of
P(uµia) does not enter into the calculation due to the central limit theorem.

2This “min” definition of the support function is trivially related to the more conventional “max” definition by
negating its argument [8].
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3.4 Naïve mean-field analysis

In analogy with the Gardner case, we begin with a concise naïve mean-field analysis. While
this analysis makes incorrect independence assumptions, it yields the correct capacity due to
the same underlying symmetry present in the Gardner case.

Starting from the stationarity condition (Eq. 72), we incorrectly assume independence
between λµsµ and uµi , yielding




w2
i

�

=
P
∑

µ,ν=1

D+1
∑

a,b=1




uµiauνi b
�

︸ ︷︷ ︸

=δabδ
µν/N




λµsµaλ
νsνb
�

(75)

= α



∥λµsµ∥22
�

. (76)

From weight-vector normalization



w2
i

�

= 1/κ2, we obtain a formula for the capacity,

α−1 = κ2



∥λµsµ∥22
�

. (77)

Next, we analyze the vector Vµ by substituting Eq. 72 into Eq. 67, yielding

Vµ =
P
∑

ν=1

N
∑

i=1

uµi (u
ν
i )

Tλνsν . (78)

Separating diagonal (µ= ν) and off-diagonal (µ ̸= ν) terms gives

Vµ =

� N
∑

i=1

uµi (u
µ
i )

T

�

λµsµ +
∑

ν̸=µ

N
∑

i=1

uµi (u
ν
i )

Tλνsν . (79)

The square-bracket term is I (the identity matrix) at large N due to the choice of embedding
variance (Eq. 74). Applying again the incorrect assumption of independence between xµi and

λµ, the second term, which we denote by Tµ =
∑

ν̸=µ

∑N
i=1 uµi (u

ν
i )

Tλνsν, is Gaussian (by the
central limit theorem) with




Tµa
�

=
∑

ν̸=µ

N
∑

i=1

D+1
∑

b=1




uµiauνi b
�

︸ ︷︷ ︸

=0




λνsνb
�

= 0 , (80)




Tµa Tµb
�

=
∑

ν,ρ ̸=µ

N
∑

i, j=1

D+1
∑

c,d=1

¬

uµiauνicu
µ

j buρjd
¶

︸ ︷︷ ︸

=δνρδi jδabδcd/N2




λνsνc λ
ρsρd

�

(81)

= α



∥λµsµ∥22
�

δab . (82)

Thus, from Eq. 79, we have
Vµ = Tµ +λµsµ , (83)

where Tµ ∼N (0,I/κ2) (using Eq. 76). This leads to the capacity result

α−1 = κ2



∥Vµ − Tµ∥22
�

Tµ∼N (0,I/κ2) . (84)

Given a sample of Tµ, the corresponding Vµ is determined by the KKT conditions, in analogy
to how λµ was determined from ηµ in the Gardner case. Specifically, Eq. 83, together with the
primal feasibility, dual feasibility, and complementary slackness conditions, comprise the KKT
conditions for the convex optimization problem

Vµ = arg min
V

1
2
∥V − Tµ∥22 , subject to gS(V)≥ 1 , (85)
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which has a unique solution Vµ for differentiable manifolds S. Eq. 84 is the correct capacity
for random manifolds derived by Chung et al. [8].

As in the Gardner problem, there is an inconsistency lurking in this naïve mean-field analy-
sis that results in two contradictory formulas for the capacity (the other being α−1 = κ2 〈λµ〉).
In the Appendix, we show that this is resolved through the bipartite cavity analysis presented
next, which properly handles the correlations between variables and allows for calculation of
response functions.

3.5 Bipartite cavity analysis

The cavity method properly handles correlations between the quenched disorder and dynamic
variables. We analyze a bipartite system where the interactions are mediated through random
embeddings (Fig. 1, “Manifold capacity”). The system is described by

Vµ =
N
∑

i=1

wiu
µ
i + Iµ , (86)

wi =
P
∑

µ=1

(uµi )
T (λµsµ) + Ii , (87)

where Iµ and Ii are infinitesimal source terms for computing response functions. The feature
variables are weights wi , as in the Gardner case, while the datum variables are now vector-
valued products λµsµ, which can be interpreted as vector generalizations of the Lagrange
multipliers from the Gardner case. We call them vector-Lagrange multipliers for this reason.

The cavity analysis proceeds in parallel for features and data, following the same four
steps as before: starting with unperturbed variables, introducing a cavity variable, analyzing
its response to existing variables, and solving self-consistently through disorder averaging. We
now do each case in turn.

3.5.1 Feature cavity

We begin with unperturbed dynamic variables wi and λµsµ, then introduce a new weight w0
with quenched random variables uµ0 that connect it to the existing vector-Lagrange multipliers
λµsµ. Since the couplings are weak (uµia ∼ 1/

p
N), introducing w0 delivers small perturbations

to the existing vector-Lagrange multipliers,

δ(λµsµ) =
P
∑

ν=1

d(λµsµ)
d Iν

w0uν0 , (88)

where [d(λµsµ)/d Iν]ab = d(λµsµa )/dIνb is a response matrix. The bipartite structure implies
that the perturbations to other weights wi with i = 1, . . . , N do not enter directly into the
expression for w0, which reads

w0 =
P
∑

µ=1

(uµ0 )
T [λµsµ +δ(λµsµ)] + I0 (89)

=
P
∑

µ=1

(uµ0 )
Tλµsµ +

P
∑

µ,ν=1

(uµ0 )
T d(λµsµ)

d Iν
uν0 w0 + I0 (90)

= η0 + F00w0 + I0 , (91)
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where we define the cavity field η0 and self-coupling F00 as

η0 =
P
∑

µ=1

(uµ0 )
Tλµsµ , (92)

F00 =
P
∑

µ,ν=1

(uµ0 )
T d(λµsµ)

d Iν
uν0 . (93)

The cavity construction ensures that, in these expressions, the quenched disorder, uµ0 , and dy-
namic variables, λµsµ and d(λµsµ)/d Iν, are independent of each other, allowing for calculation
of disorder-averaged statistics of these expressions. Applying the central limit theorem, η0 is
Gaussian with

〈η0〉= 0 , (94)



η2
0

�

= α



∥λµsµ∥22
�

. (95)

Meanwhile, the self-coupling is order-one and self-averaging with mean

〈F00〉= αSλ , (96)

where we define

Sλ =
­

tr
d(λµsµ)

d Iµ

·

. (97)

From Eq. 91, we obtain w0 = η0 + αSλw0 + I0 and thus the weight response function
Sw = 1/(1−αSλ), identical to the Gardner case (Eq. 38). Dropping source terms, we have
w0 = Swη0. Weight-vector normalization




w2
0

�

= 1/κ2 then yields the capacity formula

α−1 = κ2(Sw)2



∥λµsµ∥22
�

. (98)

We now finish the calculation by performing a datum cavity analysis.

3.5.2 Datum cavity

For the datum cavity analysis, we begin with unperturbed dynamic variables wi and λµ, then
introduce a new vector-Lagrange multiplier λ0s0 with quenched random variables u0

i that
connect it to the existing weights wi . Since the couplings are weak, introducing λ0s0 delivers
small perturbations to the existing weights,

δwi =
N
∑

j=1

dwi

dI j
(u0

j )
T (λ0s0) . (99)

The bipartite structure implies that the perturbations to other vector-Lagrange multipliersλµsµ

with µ= 1, . . . , P do not enter directly into the expression for V0, which reads

V0 =
N
∑

i=1

(wi +δwi)u
0
i + I0 (100)

=
N
∑

i=1

wiu
0
i +

N
∑

i, j=1

dwi

dI j
u0

i (u
0
j )

T (λ0s0) + I0 (101)

= T0 + F00λ0s0 + I0 , (102)
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where we define the cavity field T0 and self-coupling matrix F00 as

T0 =
N
∑

i=1

wiu
0
i , (103)

F00 =
N
∑

i, j=1

dwi

dI j
u0

i (u
0
j )

T . (104)

The cavity construction ensures that, in these expressions, the quenched disorder, u0
i , and dy-

namic variables, wi and dwi/dI j , are independent of each other, allowing for calculation of
disorder-averaged statistics of these expressions. Applying the central limit theorem, T0 is
Gaussian with




T0
a

�

= 0 , (105)



T0
a T0

b

�

=
1
κ2
δab . (106)

The self-coupling matrix is order-one and self-averaging with mean



F00
ab

�

= Swδab . (107)

From Eq. 102, we obtain
V0 = T0 + Swλ0s0 + I0 . (108)

Using the same logic regarding the KKT conditions as in the naïve analysis, we recognize that
Eq. 108, together with the primal feasibility, dual feasibility, and complementary slackness
conditions comprise the KKT conditions for the convex optimization problem

V0 = arg min
V

1
2
∥V − T0∥22 , subject to gS(V)≥ 1 , (109)

which we have reproduced from the naïve analysis (Eq. 85) with the cavity notation, and which
has a unique solution for differentiable manifolds. Upon insertion into the capacity formula
(Eq. 98), we obtain

α−1 = κ2(Sw)2
�

∥V0 − T0∥22
(Sw)2

�

. (110)

The (Sw)2 factors cancel, yielding the correct capacity of Eq. 84. As in the Gardner problem,
this cancellation reflects an underlying symmetry in the bipartite description of the problem.

The complete calculation of response functions and resolution of the inconsistency between
capacity formulas in the naïve analysis is given in the Appendix.

4 Kernel ridge regression

4.1 Background

Having analyzed two classification problems, we now turn to regression, where the goal is to
predict continuous outputs rather than binary labels. In particular, we consider kernel regres-
sion, which extends linear regression to nonlinear function approximation while preserving the
mathematical tractability of linear methods. The key insight is to implicitly map input data into
a high-dimensional (often, infinite-dimensional) feature space through a kernel function that
computes inner products between these implicit feature vectors without explicitly construct-
ing them. This “kernel trick” allows the method to learn nonlinear relationships in the original
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input space. A ridge penalty controls the complexity of the learned function by regularizing
its norm, promoting generalization to new data.

Despite having an analytical solution, understanding how kernel ridge regression
generalizes—that is, how well it performs on unseen data as a function of training set size,
data properties, and regularization strength—is nontrivial. The generalization error was first
computed using the replica method by Bordelon, Canatar, and Pehlevan [9,10] (see also [23],
which derived similar results in a specific setting; as well as earlier analyses of Gaussian process
regression [24,25]). Simon et al. [26] later derived equivalent results through a conservation
law, using a cavity-like argument based on adding a single kernel eigenmode. The cavity anal-
ysis presented here differs by introducing a bipartite structure that considers both the addition
of a kernel eigenmode (feature cavity) and a training example (datum cavity). This approach
parallels recent work by Bordelon et al. [27], who used a cavity method, in addition to a
functional-integral method, to derive dynamical mean-field equations for learning dynamics,
with the steady state describing the generalization error calculated here (see also [22]). Other
work has derived this result using random matrix theory [28]. Atanasov et al. [29] recently
reviewed these results and connected them to renormalization concepts from physics. The in-
sights from kernel ridge regression illuminate generalization in deep-learning systems through
frameworks like the neural tangent kernel [19]. In contrast to the typical-case behavior, [30]
considered worst-case behavior. Cui et al. [31] showed that differences in kernel ridge regres-
sion decay rates previously attributed to typical-case vs. worst-case analyses actually result
from noiseless vs. noisy data assumptions.

4.2 Problem formulation

Consider a supervised learning task with P training examples xµ ∈ χ from an arbitrary input
space χ and corresponding real-valued targets yµ ∈ R. We seek a function f : χ → R that fits
these training points and, ideally, generalizes to new inputs. We select this function from a
reproducing kernel Hilbert space (RKHS) H, which is a Hilbert space of functions defined by
a symmetric positive-definite kernel function K : χ ×χ → R.

The learning objective balances two competing goals: minimizing prediction errors on
training points and controlling function complexity through regularization via the RKHS norm.
Specifically, we seek a predictor f ∈H that minimizes the regularized loss

L= 1
2

P
∑

µ=1

( f (xµ)− yµ)2 +
γ

2
∥ f ∥2H , (111)

where γ > 0 is the regularization parameter and ∥ f ∥2H is the squared RKHS norm. The
first term penalizes prediction errors on the training data, while the second term encourages
smoothness by penalizing large RKHS norms.

By the representer theorem, despite H being potentially infinite-dimensional, the optimal
solution f can be expressed as a finite linear combination of kernel functions centered at the
training points,

f (x) =
P
∑

µ=1

λµK(xµ, x) , (112)

where λµ are coefficients to be learned. Due to the quadratic nature of both the loss and reg-
ularization terms, these coefficients can be found through convex optimization. In particular,
these coefficients minimize

L= 1
2

P
∑

µ=1

� P
∑

ν=1

K(xµ, xν)λν − yµ
�2

+
γ

2

P
∑

µ,ν=1

K(xµ, xν)λµλν . (113)
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The optimality condition dL/dλµ = 0 yields

f (xµ)− yµ + γλµ = 0 . (114)

To analyze this system, we use the kernel’s eigendecomposition (also called the Mercer
decomposition),

K(x , x ′) =
N
∑

i=1

ρiφi(x)φi(x
′) , (115)

where φi(x) are an orthonormal basis of eigenfunctions with respect to the data distribution
p(x), and ρi > 0 are the corresponding eigenvalues. Here, i = 1, . . . , N indexes eigenmodes of
the kernel with respect to the data distribution, and N is typically infinite. The eigenfunctions
satisfy

∫

χ

d x ′p(x ′)K(x , x ′)φi(x
′) = ρiφi(x) , (116)

∫

χ

d x p(x)φi(x)φ j(x) = δi j . (117)

This eigenbasis allows us to express both the predictor f (x) and the target function y(x),
which generates the observed targets via yµ = y(xµ), as

f (x) =
N
∑

i=1

wiφi(x) , (118)

y(x) =
N
∑

i=1

aiφi(x) , (119)

where wi and ai are expansion coefficients. The predictor coefficients relate to the representer
coefficients in Eq. 112 through

wi = ρi

P
∑

µ=1

λµφi(x
µ) . (120)

To track prediction performance, we define deviation variables measuring both prediction
and eigenbasis errors,

ϵµ = yµ − f (xµ) , (121)

∆i = ai −wi . (122)

From the optimality condition (Eq. 114), we have

ϵµ = γλµ . (123)

These variables let us express the training data-averaged training and test errors as

Etrain =

*

1
P

P
∑

µ=1

(yµ − f (xµ))2
+

=



(ϵµ)2
�

, (124)

Etest =



(y(x∗)− f (x∗))2
�

=
N
∑

i=1




∆2
i

�

, (125)

where 〈· · ·〉 denotes averaging over the distribution p(x) from which the training data are
drawn, and x∗ represents a test point drawn from the same distribution.
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4.3 Natural scalings

We analyze this system in a high-dimensional limit where both N and P approach infinity with
their ratio fixed. That is, that the number of modes N needed to diagonalize the kernel with
respect to the full data distribution p(x) is on the same order as the number of training data P.
One way this can arise is if p(x) is supported on a finite set of N points that are uncorrelated
or weakly correlated under the kernel, and the training set consists of P = O(N) randomly
subsampled points from this support.

Several quantities must scale appropriately with P (equivalently, with N) in this limit.
We assume that both y(x) and f (x) are O(1). From the expansion of y(x) (Eq. 119) and

eigenfunction orthonormality (Eq. 117), we have



y2(x)
�

=
∑N

i=1 a2
i . For this to remain O(1),

the target-function coefficients must scale as ai = O(1/
p

P). Since the optimization aims to
set wi ≈ ai , we also have wi = O(1/

p
P). We assume that the difference ∆i between ai and

wi has the same scaling as each constituent quantity, and thus ∆i = O(1/
p

P). This implies
through Eq. 125 that Etest =O(1).

Similarly, we assume that ϵµ, given by the difference of O(1) quantities f (xµ) and yµ,
has the same scaling as each constituent quantity, and thus ϵµ = O(1). This implies through
Eq. 124 that Etrain =O(1). Also, from Eq. 123, we have λµ =O(1).

Finally, we assume K(x , x) = O(1). Averaging over x and using the kernel’s eigende-
composition (Eq. 115), we have 〈K(x , x)〉 =

∑N
i=1ρi . Setting this quantity to O(1) requires

ρi =O(1/P).

4.4 Random-eigenfunctions assumption

We denote the kernel eigenfunctions evaluated at the training data by φµi = φi(xµ). We
assume that these quantities satisfy




φ
µ
i

�

= 0 , (126)
¬

φ
µ
i φ

ν
j

¶

= δµνδi j . (127)

The zero-mean condition (Eq. 126) assumes symmetry of the eigenfunctions. With this as-
sumption, the second-order statistics (Eq. 127) follow from eigenfunction orthonormality
(Eq. 117).

For the bipartite cavity analysis, we make the stronger assumption that the componentsφµi
are i.i.d., analogous to the i.i.d. assumptions in the perceptron problems. Unlike those cases,
we will not need to invoke the central limit theorem; the i.i.d. assumption simply ensures
that augmenting the system with a statistically independent eigenmode or datum, the key
operations in the cavity method, are possible.

4.5 Bipartite cavity analysis

Unlike the perceptron problems, kernel ridge regression lacks the symmetry described in
Sec. 2.7, and thus there does not exist a naïve mean-field analysis that yields correct results.
We therefore proceed directly to the bipartite cavity analysis.

The system exhibits a bipartite structure (Fig. 1, “Kernel ridge regression”) described by

ϵµ =
N
∑

i=1

φ
µ
i ∆i + Iµ , (128)

∆i = ai −
ρi

γ

P
∑

µ=1

φ
µ
i ϵ
µ + Ii , (129)
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where Iµ and Ii are source terms for computing response functions. The structure parallels
previous problems: feature variables ∆i (eigenmode errors) and datum variables ϵµ (predic-
tion errors) interact through quenched random couplings φµi .

Although naïve independence assumptions do not yield correct results for the full analysis,
they provide useful consistency checks for the scaling behavior established in Sec. 4.3, given
the statistical properties ofφµi described in Sec. 4.4. Consider first Eq. 128: assuming indepen-

dence between the quenched disorderφµi and dynamic variables∆i , the sum
∑N

i=1φ
µ
i ∆i com-

prises N = O(P) zero-mean terms, each of magnitude O(1/
p

P). This yields an O(1) result,
consistent with the expectation that ϵµ = O(1). Similarly, for Eq. 129, the sum

∑P
µ=1φ

µ
i ϵ
µ

(under the independence assumption) consists of P zero-mean terms of magnitude O(1), pro-
ducing an O(

p
P) result. Multiplication by ρi = O(1/P) then yields an O(1/

p
P) result,

matching the expectation that ∆i =O(1/
p

P).

4.5.1 Datum cavity

We begin with unperturbed dynamic variables ϵµ and∆i , then introduce a new datum variable
ϵ0 with quenched random variables φ0

i connecting it to the existing feature variables ∆i . The
introduction of ϵ0 delivers a perturbation to the feature variables given by

δ∆i =
N
∑

j=1

d∆i

dI j

�

−
ρ j

γ
φ0

j ϵ
0
�

. (130)

The bipartite structure implies that the perturbations to other datum variables ϵµ with
µ= 1 . . . , P do not enter directly into the expression for ϵ0, which reads

ϵ0 =
N
∑

i=1

φ0
i (∆i +δ∆i) + I0 (131)

=
N
∑

i=1

φ0
i ∆i −

N
∑

i, j=1

d∆i

dI j

ρ j

γ
φ0

i φ
0
j ϵ

0 + I0 (132)

= η0 + F00ϵ0 + I0 , (133)

where we define the cavity field η0 and self-coupling F00 as

η0 =
N
∑

i=1

φ0
i ∆i , (134)

F00 = −
N
∑

i, j=1

d∆i

dI j

ρ j

γ
φ0

i φ
0
j . (135)

The cavity construction ensures that, in these expressions, the quenched disorder, φ0
i , and dy-

namic variables, ∆i and d∆i/dI j , are independent of each other, allowing for calculation of
disorder-averaged statistics of these expressions. The cavity field (which is Gaussian, though
we will not use this property) has statistics




η0
�

= 0 , (136)




(η0)2
�

=
N
∑

i=1




∆2
i

�

= Etest . (137)
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The self-coupling is order-one and self-averaging with mean




F00
�

=
1
γ

N
∑

i=1

ρi

­

d∆i

dIi

·

. (138)

From Eq. 133, we obtain the response function

Sϵ =
dϵ0

dI0
=

γ

γ+
∑N

i=1ρi

¬

d∆i
dIi

¶ . (139)

With this definition, dropping the source term yields

ϵ0 = Sϵη0 . (140)

4.5.2 Feature cavity

For the feature cavity, we introduce a new feature variable ∆0 with quenched random vari-
ables φµ0 connecting it to the existing datum variables ϵµ. The introduction of ∆0 delivers a
perturbation to the datum variables given by

δϵµ =
P
∑

ν=1

dϵµ

dIν
φν0∆0 . (141)

The bipartite structure implies that the perturbations to other feature variables ∆i with
i = 1, . . . , N do not enter directly into the expression for ∆0, which reads

∆0 = a0 −
ρ0

γ

P
∑

µ=1

φ
µ
0 (ϵ

µ +δϵµ) + I0 (142)

= a0 −
ρ0

γ

P
∑

µ=1

φ
µ
0 ϵ
µ −

ρ0

γ

P
∑

µ,ν=1

φ
µ
0

dϵµ

dIν
φν0∆0 + I0 (143)

= a0 −
ρ0

γ
η0 − F00∆0 + I0 , (144)

where we define the cavity field η0 and self-coupling F00 as

η0 =
P
∑

µ=1

φ
µ
0 ϵ
µ , (145)

F00 =
ρ0

γ

P
∑

µ,ν=1

φ
µ
0

dϵµ

dIν
φν0 . (146)

The cavity construction ensures that, in these expressions, the quenched disorder, φµ0 , and dy-
namic variables, ϵµ and dϵµ/dIν, are independent of each other, allowing for calculation of
disorder-averaged statistics of these expressions. The cavity field (which is Gaussian, though
we will not use this property) has statistics

〈η0〉= 0 , (147)



(η0)
2
�

= P



(ϵµ)2
�

= PEtrain . (148)

The self-coupling is order-one and self-averaging with mean

〈F00〉=
ρ0P
γ

Sϵ . (149)
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From Eq. 144, we obtain the response function

S∆0 =
d∆0

dI0
=

γ

γ+ Pρ0Sϵ
. (150)

Dropping the source term yields

∆0 = S∆0

�

a0 −
ρ0η0

γ

�

. (151)

To solve for the generalization error, we first determine Sϵ. We define

Sϵ =
γ

κ
, (152)

where κ is a parameter to be determined (not to be confused with the margin in the Gardner
and manifold capacity problems). Substituting Eq. 150 into Eq. 139 yields the self-consistency
equation

κ= γ+
N
∑

i=1

κρi

κ+ Pρi
. (153)

From Eqs. 140 and 137, we can relate the training and test errors via

Etrain =
γ2

κ2
Etest . (154)

Finally, we determine the test error Etest =
∑N

i=1




∆2
i

�

by squaring and averaging Eq. 151,




∆2
0

�

= (S∆0 )
2a2

0 +
P
γ2
(S∆0 )

2ρ2
0(S

ϵ)2Etest (155)

=
κ2a2

0

(κ+ Pρ0)2
+

Pρ2
0

(κ+ Pρ0)2
Etest . (156)

Solving this yields the test error

Etest =
1

1− A

N
∑

i=1

κ2a2
i

(κ+ Pρi)2
, (157)

A=
N
∑

i=1

Pρ2
i

(κ+ Pρi)2
. (158)

Together, Eqs. 153, 154, and 157 provide a complete solution for the training and test errors.
These expressions match those derived through other replica, cavity, and random-matrix ap-
proaches. The solution depends on four key ingredients: the kernel eigenspectrum ρi , target
function coefficients ai , regularization parameter γ, and number of training points P. This
explicit dependence reveals how these factors interact to determine learning performance.

5 Conclusion

We have illustrated a simple cavity method for high-dimensional convex learning problems.
Analysis of three archetypal problems—perceptron classification of points, perceptron clas-
sification of manifolds, and kernel ridge regression—reveals their shared bipartite structure.
Despite their apparent differences, each system exhibits feature and datum variables inter-
acting through random couplings, enabling unified analysis through the cavity method. This
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framework should facilitate rapid exploration of novel high-dimensional convex learning prob-
lems.

The analysis naturally extends to more general scenarios. For classification problems, one
can incorporate slack variables to allow for soft margins. While this generalization has been
analyzed using replicas for both point and manifold classification [32], the bipartite cavity
method may offer a clearer derivation.

The method can accommodate additional structure in data and labels. When the sepa-
rating hyperplane passes through the origin and the pattern distribution P(xµi ) is symmetric
about zero, binary labels yµ ∈ {−1,+1} do not affect the calculation, making class imbalance
irrelevant [8]. However, introducing a bias term or using asymmetric pattern distributions
breaks this symmetry and makes class imbalance relevant [5], requiring that the labels are
tracked through the calculation.

For correlated features in point classification, a simple form of correlation arises when
P(xµi ) is asymmetric (e.g., delta functions at ±1 with different weights), yielding nonzero
¬

xµi xµj
¶

for i ̸= j. Since patterns remain i.i.d., the method we have presented applies straight-
forwardly by retaining labels and accounting for different statistics in the disorder averaging.

A different correlation structure involves patterns drawn from a multivariate Gaussian with
anisotropic covariance Σ. In this case one can rotate the data into the eigenbasis of Σ. The
makes the problem equivalent to using features that are statistically independent but not iden-
tical, with the variance of the i-th feature given by the eigenvalue λi of Σ. The capacity is
equivalent to that for classifying P i.i.d. (equal-variance) points in an effective number of
dimensions given by the participation ratio of the spectrum,

PR=

�

∑N
i=1λi

�2

∑N
i=1λ

2
i

. (159)

More complex structures, such as Gaussian mixtures, would require additional variables for
cavity calculations.

For manifold capacity problems, one can analyze cases where manifolds exhibit correla-
tions in their centers or orientations, as has been done using the replica method [33]. Again,
doing this with the cavity method would require additional variables.

The benefit of convexity is that any solution of the KKT conditions (in classification prob-
lems) or zero-gradient conditions (in regression problems) is guaranteed to be a global opti-
mizer. In non-convex settings, such conditions are only necessary but not sufficient for global
optimality. In problems with complex energy landscapes characterized by exponentially many
hierarchically organized solutions (e.g., spin glasses), replica symmetry breaking or equivalent
techniques may be required.

The bipartite cavity framework also enables the analysis of dynamical neural networks.
Consider a recurrent network where preactivations x i(t) evolve according to

d x i(t)
d t

= −x i(t) +
N
∑

j=1

Ji jφ(x j(t)) , (160)

where Ji j are synaptic weights and φ(x) is a nonlinearity. When the weight matrix has a
product structure J = LDRT (e.g., modeling low-rank connectivity), with potentially corre-
lated columns in L and R, the system can be reformulated as coupled neuronal and latent
variables. Recent work has shown how extending the bipartite cavity approach to include two
simultaneous cavity variables enables characterization of collective network properties such
as dimensionality [14].

Recent theoretical work has shown that systems of coupled visible and hidden neurons,
with data-determined mutual couplings, provide a unified framework encompassing various
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associative-memory architectures [34–36]. These include classical models like the Hopfield
network [4], as well as dense associative memories [34] and modern attention-based archi-
tectures [36]. The bipartite cavity method can be applied to study the dynamics of such sys-
tems [37].
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A Additional manifold capacity analysis

A.1 Computing the response functions

To complete our analysis of the manifold capacity problem, we compute the response functions
explicitly. We begin by expressing

λ0s0 =
V0 − T0 − I0

Sw
. (A.1)

Differentiating with respect to the source term gives

d(λ0s0)
d I0

=
1

Sw

�

dV0

d I0
− I

�

, (A.2)

reducing our task to computing dV0/d I0.
The response behavior differs for supporting and non-supporting manifolds. For non-

supporting manifolds where gS(V0) > 1, we have λ0 = 0 and thus V0 = T0 + I0. This
immediately yields dV0/d I0 = I and d(λ0s0)/d I0 = 0. For supporting manifolds where
gS(V0) = 1, the calculation is more involved. Differentiating the equation for V0 gives

dV0

d I0
= I + Sws0

�

dλ0

d I0

�T

+ Swλ0H0 dV0

d I0
, (A.3)

where H0 = ∇2 gS(V0) is the Hessian of the support function. This Hessian captures the
local curvature of the manifold at the anchor point. Additionally, differentiating the constraint
gS(V0) = 1 yields

�

dV0

d I0

�T

s0 = 0 . (A.4)

To solve this system, we introduce the projection operator

P0 =
�

I − Swλ0H0
�−1

, (A.5)
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which is symmetric. This allows us to write

dV0

d I0
= P0

�

I + Sws0

�

dλ0

d I0

�T�

. (A.6)

Using the constraint on dV0/d I0, we solve for dλ0/d I0,

dλ0

d I0
= −

1
Sw(s0)T P0s0

P0s0 . (A.7)

Substituting back yields

dV0

d I0
= P0 −

1
(s0)T P0s0

P0s0(s0)T P0 . (A.8)

Finally, for supporting manifolds, the trace of the response function is

tr

�

d(λ0s0)
d I0

�

=
1

Sw

�

tr(P0 − I)− (s
0)T (P0)2s0

(s0)T P0s0

�

. (A.9)

We unify the supporting and non-supporting cases by defining

ψ0 =

¨

0 , non-supporting,

tr(P0 − I)− (s
0)T (P0)2s0

(s0)T P0s0 , supporting,
(A.10)

which allows us to write the self-consistency equation for the weight response function as

Sw = 1+α



ψ0
�

. (A.11)

A.2 Resolving the inconsistency

As in the Gardner problem, we encounter an apparent inconsistency between two expres-
sions for the inverse capacity. The first expression, derived from weight-vector normal-
ization without averaging, is α−1 = κ2 〈λµ〉. The second comes from the cavity analysis,
α−1 = κ2(Sw)2




∥λµsµ∥22
�

. To check that these are consistent, we first express λ0 using the
KKT conditions as

λ0 =
h0 + 1− (T0)T s0

Sw∥s0∥22
=

�

1− (T0)T s0
�

+

Sw∥s0∥22
. (A.12)

Substituting this into the first capacity formula and using Sw = 1+α



ψ0
�

yields

α−1 = κ2

®
�

1− (T0)T s0
�

+

∥s0∥22

¸

−



ψ0
�

. (A.13)

Consistency requires the identity

κ2

*
�

1− (T0)T s0
�2
+

∥s0∥22

+

= −



ψ0
�

+κ2

®
�

1− (T0)T s0
�

+

∥s0∥22

¸

. (A.14)

We can prove this identity through integration by parts. For clarity, we temporarily drop the 0
superscripts. The left-hand side can be written as

κ2

∫

DT
�

1− T T s
�

Swλ= κ2Sw 〈λ〉 − κ2Sw

∫

DT T Tλs , (A.15)
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where DT denotes Gaussian measure, DT = dT f (T), where

f (T) =

�

κ2

2π

�(D+1)/2

exp

�

−
κ2

2
∥T∥22

�

. (A.16)

The second term can be evaluated by integration by parts,

−κ2Sw

∫

DT T Tλs = Sw

∫

dT [∇T f (T)]T λs (A.17)

= −Sw

∫

dT f (T)∇T · (λs) . (A.18)

The divergence is simply

∇T · (λs) = tr
�

d(λs)
d I

�

, (A.19)

completing the proof of the identity.
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